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SUMMARY
The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds
transformative potential for histopathology research. Here, we present pathology-compatible deterministic
barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for
spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived
FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-spe-
cific splicing isoforms, and high-sensitivity transcriptomicmapping of clinical tumor FFPE tissues stored for 5
years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant
subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory net-
works and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT
dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT
stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology
evaluation.
INTRODUCTION

Spatial transcriptomics is revolutionizing our understanding of

developmental biology, oncology, and disease pathology, map-

ping intricate gene expression patterns within their native tissue

context.1–4 However, to date, the scope of the field primarily

revolves around the analysis of messenger RNA (mRNA) expres-

sion. The transcriptome in eukaryotic cells is a myriad of all dy-

namic and diverse RNA molecules, encompassing not only

mature mRNAs encoding protein synthesis but also splicing var-

iants, small RNAs, and other non-coding RNAs with regulatory

functions.5,6 Thus, spatial profiling of different RNA species

throughout their life cycle7,8 is imperative for dissecting the full

picture of RNA biology in complex tissues.
Cell 187, 1–20, Novem
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Formalin-fixed paraffin-embedded (FFPE) tissues are essen-

tial in clinical practice, being the backbone of human histopath-

ological diagnoses.9 Pathology departments have accrued vast

collections of FFPE blocks over time, creating a rich yet underu-

tilized compendium of materials that, accompanied by clinical

data, stands as a treasure trove for human biology and transla-

tional research.10 Nevertheless, FFPE specimens pose certain

challenges. The RNAwithin these samples is susceptible to frag-

mentation during the paraffin-embedding process and may

further experience heightened degradation under suboptimal

storage. Additionally, RNAmay undergo chemical modifications,

resulting in fragmentation or resistance to the enzymatic reac-

tions required for sequencing. The loss of poly-A tails introduces

another layer of complexity, restricting the utility of oligo-dT
ber 14, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Patho-DBiT workflow and spatial whole transcriptome mapping of mouse embryo

(A) Schematic workflow, molecular underpinnings, and technological spectrum of Patho-DBiT.

(B) Patho-DBiT’s performance on an E13 mouse embryo section. Top left: H&E of an adjacent section. Top right: tissue scanning. Bottom: unsupervised

clustering.

(C) Spatial pan-mRNA and UMI count maps.

(D) Correlation analysis between replicates, with the Pearson coefficient indicated.

(E) Read coverage along the gene body and the percentage of reads mapped to the 50 UTR.
(F) Proportion of reads mapped to different RNA categories.

(G) Comparison of non-coding RNA read mapping ratios between Patho-DBiT and normal DBiT. Data shown are mean ± SD (n = 2).

(H) Spatial count maps of different non-coding RNAs.

(I) Left: cell patterning and embedding. Right: relative miR-142 expression in KO and WT cells. Data shown are mean ± SD (n = 3).

(J) Spatial miR-142 expression in patterned cells (I) and the evaluation of detection sensitivity and specificity.

(legend continued on next page)
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primed reverse transcription. Consequently, options for spatially

profiling RNA molecules in this tissue type are limited.

In this evolving landscape, we present pathology-compatible

deterministic barcoding in tissue (Patho-DBiT) not only enabling

spatial full-coverage base-by-base whole transcriptome seq-

uencing but also crafted to address the challenges of clinically

archived FFPE tissues (Figure 1A). Patho-DBiT integrates in

situ polyadenylation,11,12 microfluidic in tissue barcoding,13

and computational innovations to decode rich RNA biology

inherent in FFPE samples. The platform capitalizes on RNA frag-

mentation naturally occurring in FFPE specimens and appends

poly(A) tails to a broad spectrum of RNA species, thereby over-

coming traditional barriers associated with FFPE samples and

even outperforming the assays conducted with frozen tissues.

By spatially barcoding these RNA molecules, we now can gain

a deeper appreciation of high-sensitivity transcriptomics, alter-

native splicing, genetic variation profile, microRNA regulation,

and RNA dynamics within clinical tissues.

RESULTS

Patho-DBiT design and spatial whole transcriptome
mapping of mouse embryo
Patho-DBiT initiates with tissue section deparaffinization and

heat-induced crosslink reversal (Figure 1A). After tissue permea-

bilization, enzymatic in situ polyadenylation enables detection of

various RNAs, followed by complementary DNA (cDNA) strand

synthesis. Spatial barcoding is then achieved using microfluidic

chips featuring 50 or 100 microchannels.13,14 Post-imaging, the

tissue undergoes digestion to extract barcoded cDNA to

perform the downstream procedures. Polyadenylation adds

poly(A) tails to all RNAs, including the predominant ribosomal

RNAs (rRNAs), which constitute 80%–90% of cellular RNAs

but provide limited information on the target transcriptome. To

circumvent the loss of rare or low-abundance transcripts, cDNAs

originating from rRNAs were selectively removed from ampli-

cons, significantly reducing these fragments before sequencing

(Figure S1A).

We applied Patho-DBiT to E13 mouse embryo FFPE section

using a 50 mm pixel-sized device. Unsupervised clustering re-

vealed 20 transcriptomic clusters, and the spatial UMAP closely

aligned with the histology of an adjacent section stained with

H&E (Figure 1B). Cell type-specificmarker genes were identified,

characterizing their expression within each individual cluster

(Figure S1B). The distribution of these clusters exhibited con-

spicuous and distinctive spatial patterns, underscoring the

high accuracy of this assay (Figure S1C). Patho-DBiT detected

an average of 5,480 genes and 15,381 unique molecular identi-

fiers (UMIs) per pixel, with the genome-wide pan-mRNA and

UMI maps displaying a strong concordance with tissue

morphology and density (Figure 1C). Reproducibility among rep-

licates conducted on adjacent slices was notably high

(Figures 1D and S1D). To discern the cell identities within each
(K) Detection of microRNAs in the E13 section.

(L) Left: read coverage of miR-122 mapped to the genome location. Right: spatia

(M) Distribution of gene and UMI counts in different tissue types at varying spati

See also Figure S1.
cluster, we integrated our datasets with single-cell RNA

sequencing (scRNA-seq) reference data from E13.5 mouse

organogenesis.15 This integration yielded a cohesive pattern,

aligning our spatial pixels with the scRNA-seq dataset in a

well-conformed manner (Figure S1E).

To assess read coverage across gene bodies, we generated

replicate datasets on adjacent E13 sections using normal

DBiT-seq without polyadenylation. While still exhibiting a 30

bias, Patho-DBiT showcased an approximate 2-fold increase

in coverage across the entire gene body, and the percentage

of reads mapped to 50 untranslated region (UTR) more than

doubled (Figure 1E). In both replicates, �47% of reads were

mapped to protein-coding RNA, while the remaining reads

were mapped to long non-coding RNA (lncRNA), microRNA,

miscellaneous RNA (miscRNA), rRNA, small nucleolar RNA

(snoRNA), small nuclear RNA (snRNA), small Cajal body-specific

RNA (scaRNA), transfer RNA (tRNA), vault RNA, Y RNA, or other

uncategorized RNAs (Figure 1F). Among these, tRNA, snRNA,

and lncRNA constituted a relatively high proportion of the reads,

consistent with their known high abundance in the cell.16

Notably, Patho-DBiT demonstrated a 10- to 100-fold higher cap-

ture rate for most non-coding RNAs compared with the previous

DBiT-seq protocol (Figure 1G). It maintained a low level of rRNA

reads (�3%), reaffirming the efficacy of removing this undesired

category. Spatial patterns of these non-coding RNAs revealed

general enrichment in the brain and liver regions, mirroring the

distribution trend observed for coding mRNAs (Figure 1H). We

examined the spatial expression of tRNA isotypes by grouping

reads encoding the same amino acid, revealing high levels of as-

partic acid and asparagine tRNAs in the heart and isoleucine and

threonine tRNAs in the brain (Figure S1F). These findings align

with published data showing expression level in adult mouse tis-

sues measured using demethylase-tRNA sequencing.17

To benchmark Patho-DBiT’s accuracy in detecting small RNA,

we used miR-142 knockout (KO) Ba/F3 cells and assembled

them into a pattern of the letter ‘‘Y,’’ surrounded by wild-type

control cells (Figure 1I). The assembled cell aggregate is

embedded and sectioned for Patho-DBiT sequencing. The de-

tected miR-142 distribution negatively correlates with the letter

‘‘Y’’ region, which was filled with KO cells, demonstrating a

detection sensitivity of 86.95% and specificity of 84.19% (Fig-

ure 1J). We next examined the microRNA profile in the E13 sec-

tion. In total, Patho-DBiT detected 1,063 microRNAs, peaking at

22 nt in the count of mapped reads (Figure 1K), consistent with

the typical length of microRNAs.18 To evaluate the mapping ac-

curacy, we focused on miR-122, one of the earliest examples of

a tissue-specific microRNA, constituting �70% of the total mi-

croRNA pool in the liver.19 The miR-122 reads are aligned to

miR-122-5p, the known dominant mature strand produced

from the pre-miR-122 hairpin (Figure 1L). Additionally, miR-122

is enriched within the liver area in the embryo section.

We applied Patho-DBiT across diverse tissue types and

spatial pixel sizes, yielding remarkable results (Figure 1M). At a
l distribution of miR-122.

al pixel sizes.

Cell 187, 1–20, November 14, 2024 3



ll
OPEN ACCESS

Please cite this article in press as: Bai et al., Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues, Cell (2024),
https://doi.org/10.1016/j.cell.2024.09.001

Resource
50 mm pixel size, our approach exhibited superior performance

compared with the probe-based Visium for FFPE at a 55 mm

feature size, even surpassing its fresh frozen counterpart. At a

20 mm pixel size, we identified over 4,000 genes per pixel in lym-

phoma sections and more than 3,000 genes in samples from

mouse lymph nodes. Notably, employing device with 10 mm

channels, we identified 2,292 genes and 6,021 UMIs from a lym-

phoma section at this near-cellular level.

Spatial co-profiling of region-specific alternative
splicing and A-to-I RNA editing in the mouse brain
To demonstrate Patho-DBiT’s capability to simultaneously map

gene expression and post-transcriptional RNA processing, we

profiled an FFPE mouse coronal brain section. An average of

6,786 genes and 31,063UMIswere detected per pixel, exhibiting

a spatial distribution strongly correlated with the tissue histology

(Figure 2A). Clustering analysis unveiled 15 anatomical clusters

characterized by specific gene markers, and the spatial arrange-

ments broadly aligned with the region annotations on a similar

section from the Allen Brain Atlas (Figures 2B and S2A). The iso-

cortex area was precisely deconstructed into 3 layers, assigning

cluster 7 to layer 1–2, cluster 4 to layer 4–5, and cluster 10 to

layer 6a–b.20 Spatial pattern of the primary defining gene in

each cluster closelymirrored the in situ hybridization (ISH) results

for the same genes (Figure S2B), underscoring its capacity to

faithfully reflect fine tissue structures. Integration and co-embed-

ding the Patho-DBiT data with scRNA-seq atlas from cells in the

mouse cortex and hippocampus validated the identity of these

clusters21 (Figure 2C). Particularly, cells in clusters 0, 3, 9, 11,

and 12, located in the midbrain or hindbrain areas, remained

largely unmapped due to the absence of corresponding cells in

the reference scRNA-seq dataset.

Alternatively spliced transcripts play a crucial role in neurogen-

esis andbrain development.22While long-read sequencing is ideal

for capturing the full exonic structure of a transcript, short-read

RNA-seq can still identify splicing events, offering advantages

like greater read depth and cost efficiency.23–25 Through poly(A)

tailing to the RNA transcript fragments (Figure S2C), Patho-DBiT

exhibited remarkably broader coverage across the gene body

than the Visium spatial transcriptomics on a frozen mouse brain

section (Figure S2D). We detected a total of 3,879 distinct alterna-

tive splicing events in 2,368 geneswhen at least 2 splice-junction-

spanning read counts were required (Figure S2E), covering all the

major event types, including skipped exon (SE), retained intron

(RI), alternative 30 splice site (A3SS), alternative 50 splice site

(A5SS), andmutually exclusive exon (MXE). This number substan-

tially decreased when the cutoff threshold was increased to 10

read counts (Figure S2E). At the 2-read threshold, each spatial

spot yielded an average of 105 alternative splicing events in 85

genes, with a mean coverage level of 43 UMIs per event when

aggregating all the pixels (Figure S2F).

Although current read coveragemay not reliably infer splicing at

the pixel level, we explored significant regional differences by

aggregating reads from all pixels within an anatomical region (Fig-

ure 2D). At the regional level, alternative splicing events were de-

tected in 393 to 1,179 genes, with a median of hundreds of read

counts covered, significantly surpassing those of genes without

alternative splicing events detected (Figure S2G). Utilizing criteria
4 Cell 187, 1–20, November 14, 2024
set by the computational program rMATS,23 we identified dozens

to hundreds of differential alternative splicing events between two

brain regions, depending on the read count thresholds applied

(Figure 2E). We further examined the top-ranked genes involved

in brain functions that show pronounced regional isoform switch-

ing (Figure 2F). For example, Myl6, a gene widely involved in

neuronal migration and synaptic remodeling26 with a uniform dis-

tribution of geneexpression across the entire section, exhibited an

enriched inclusion isoform (Myl6-206) in the fiber tracts and hind-

brain, in contrast to the skipping isoform (Myl6-201) enriched in

CA1 (Figure 2G). Ppp3ca has been identified as a leading modu-

lator of genetic risk in Alzheimer’s disease.27 Our data unveiled

distinct isoform usage patterns, with the inclusion isoform

(Ppp3ca-201) prevailing in the isocortex and CA1, while the skip-

ping isoform (Ppp3ca-202) was exclusively expressed in the DG

(Figure 2H). Patho-DBiT also identified spatial isoform distribution

of Stxbp1, a functional gene regulating neurotransmitter release28

(Figure S2H). The spatial expression patterns of both genes and

their isoforms are consistent with an independent dataset from

frozen coronal sections, where isoform data were obtained using

long-read nanopore sequencing29 (Figure S2I).

Transcriptomic diversity expands through adenosine-to-ino-

sine (A-to-I) RNA editing, an essential process vital for proper

neuronal function.30 With superior read coverage, Patho-DBiT

spatially mapped A-to-I editing in situ on FFPE brain sections,

unveiling a distinctive editing ratio landscape across different re-

gions (Figure 2I). In line with prior findings,31 thalamus exhibited a

notably elevated editing ratio (mean 27.9%), while fiber tracts

displayed a lower ratio (mean 12.7%). This pattern closely corre-

sponds to the expression levels and spatial frequencies of genes

encoding A-to-I editing enzymes, known as adenosine deami-

nases acting on RNA (ADAR).32 Particularly, the spatial distribu-

tion of Adarb1 closely mirrored the editing ratio (Figure 2J).

Intriguingly,Adar showed ubiquitous expression without correla-

tion to RNA editing (Figure S2J). We next cross-referenced the

editing ratio with the abovementioned published dataset.29 In

addition to the robust correlations in regional Adarb1 expression

and editing ratio between the two technologies (Figures S2K and

S2L), we observed a high correlation across 259 commonly de-

tected editing sites showing at least 10 UMIs in both datasets

(Figures 2K and S2M; Table S1). Therefore, Patho-DBiT provides

a spatial delineation of gene expression, region-specific splicing

isoforms, and A-to-I editing in the FFPE mouse brain section.
Patho-DBiT recapitulates lymphomagenesis biology in
the clinical archival AITL sample
We next extended the spatial profiling to clinically archived FFPE

tissues. Patho-DBiT was employed to barcode a tissue section

obtained from the subcutaneous nodule of a patient diagnosed

with angioimmunoblastic T cell lymphoma (AITL) (Figure S3A).

This block had been stored at room temperature for over 5 years

prior to our assay. Unsupervised clustering revealed 10 spatially

organized clusters aligned with histological structures (Fig-

ure 3A). The UMAP, with an average of 5,364 genes and

11,989 UMIs per pixel, delineated distinct cell types defined by

canonical markers (Figures 3B and S3B). Notably, cluster 5 ex-

hibited high expression of connective tissue cell-related genes,



Figure 2. Spatial co-mapping of gene expression and RNA processing in the mouse brain

(A) Patho-DBiT profiling of a mouse brain section. Left: H&E of an adjacent section. Middle: tissue scanning. Right: spatial pan-mRNA and UMI count maps.

(B) Unsupervised clustering. The distribution aligned with the region annotation from the Allen Brain Atlas.

(C) Integration of spatial data with scRNA-seq dataset.

(D) Anatomical brain region labeling in the Patho-DBiT dataset.

(E) Number of significant differentially spliced events and parental genes between brain region pairs under different read count thresholds.

(F) Top-ranked 12 genes exhibiting significant regional differences in exon inclusion levels.

(G and H) Junction read coverage of Myl6 (G) and Ppp3ca (H) splicing event in specific brain regions.

(I) Left: spatial variations in A-to-I RNA editing. Right: distribution of editing ratio across all editing sites and the expression level of ADAR-encoding genes in

different brain regions.

(J) Left: spatial Adarb1 expression. Right: correlation between the Adarb1 expression and the average regional editing ratio across various brain regions, with the

Spearman coefficient indicated.

(K) Editing ratio correlation between 259 sites commonly detected by Patho-DBiT and long-read nanopore sequencing, as reported in the reference literature,

with the Pearson coefficient indicated.

See also Figure S2 and Table S1.
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Figure 3. High-sensitivity spatial transcriptomics of an AITL sample stored for 5 years

(A) Spatial transcriptome mapping of an FFPE AITL tissue stored for 5 years. Left top: H&E of an adjacent section. Left bottom: tissue scanning. Right: unsu-

pervised clustering.

(B) Top-ranked DEGs defining each cluster.

(C) Spatial phenotyping of an adjacent section using CODEX technology.

(D) Spatial distributions of B cells, T cells, and macrophages revealed by Patho-DBiT, exhibiting a strong Pearson correlation with the proteomic data from

CODEX.

(E) Top: CODEX data from the yellow square indicated area in (C). Bottom: DEGs in cluster 0 corresponding to the indicated region.

(F) Ligand-receptor interactions within cluster 0.

(G) Signaling pathways regulated by the DEGs in cluster 0. z score is computed and used to reflect the predicted activation level (z > 0, activated; z < 0, inhibited; z

R 2 or z % � 2 can be considered significant).

(H) Graphical network of canonical pathways, upstream regulators, and biological functions regulated by DEGs identified in cluster 0.

See also Figure S3.
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exclusively within the region displaying consistent morphology in

the H&E staining.

To assess capture accuracy in this long-term stored FFPE sec-

tion,weconductedhigh-plex spatial cell typing onanadjacent tis-

sue section using the co-detection by indexing (CODEX) assay.33

The proteomic data faithfully depicted the histological profile,

revealing a population of malignant T follicular helper (Tfh) cells

with strong CD4 expression and minimal CD8 and granzyme B

(Figures 3C, S3C, and S3D). We traced the expression patterns

of B cells, T cells, and macrophages and compared them to cor-

responding surfacemarkers fromCODEX data, revealing notable

spatial correlations between the two modalities (Figure 3D). The

proliferation markers MKI67 and PDCD1, frequently expressed

on malignant AITL cells, exhibited a dense nodular distribution in

this section, consistently identified by CODEX (Figure S3E).

Analysis of differentially expressed genes (DEGs) in cluster

0 revealed significant upregulation of B-cell markers, malignant

Tfh cell markers, and markers associated with the abnormally

proliferative follicular dendritic cells in AITL.34 The profile from

high-power CODEX imaging of this region corroborated the

active expression of CD20, CD4, and CD21 (Figure 3E). This intri-

cate composition, evocative of AITL’s distinctive tumor microen-

vironment, warrants further investigation. Cell-cell interaction

analysis highlighted that the most prevalent interaction pair in

this region was between CXCL13 and its receptor genes (Fig-

ure 3F). Given its high expression in nearly all cases, CXCL13

serves as a specific diagnostic marker for AITL, and its interac-

tion with CXCR5 is deeply implicated in tumorigenesis.35

Patho-DBiT accurately unveiled this regulatory mechanism,

complemented by the spatial distribution profile (Figure S3F).

We then delved into signaling pathways governed by DEGs

within cluster 0. Alongside the activation of fundamental T cell

immune functions in this cluster (Figure S3G), our analysis pin-

pointed the upregulation of a cascade of AITL-specific pathways

integral to the pathogenesis process,36 including PI3K/AKT,

CD40, JAK/STAT, NF-kB, ICOS-ICOSL, VEGF, mTOR, and

ERK/MAPK (Figure 3G). Conversely, general cancer suppression

signals like p53 and PTEN were significantly inhibited within this

cluster. Moreover, Rho GTPases signaling, known for their func-

tional involvement in the initiation and progression of AITL,37

showed significant activation, coinciding with upregulated path-

ways associated with cell cycle regulation and metabolism.

Together, Patho-DBiT recapitulates the underlying biology of

lymphomagenesis in an AITL biopsy sample archived at room

temperature for over 5 years. This comprehensive understanding

is summarized through a graphical network encompassing ca-

nonical pathways, upstream regulators, and biological functions

(Figure 3H).

Super-resolved tissue architecture by integrating
expanded Patho-DBiT with high-resolution histology
We further used a 100 3 100 microfluidic device to barcode

10,000 spots at a 20 mm pixel size to spatially profile a clinical

tumor biopsy from a patient diagnosed with extranodal marginal

zone lymphoma of mucosa-associated lymphoid tissue (MALT),

a low-grade non-Hodgkin B-cell lymphoma (BCL).38 The section

was prepared with an FFPE block stored for 3 years at room tem-

perature. Biopsy from the gastric antrum of the stomach showed
a dense nodular infiltrate of lymphocytes primarily in themucosa,

as detected by endoscopy (Figure S4A).

In all the aforementioned samples, Patho-DBiT primarily in-

cludes readsmapped to exonic regions.While these exonic reads

yield an average of 2,190 genes and 4,202 UMIs per pixel in the

MALTsection,wedetecteda substantial number of intronic reads,

corresponding to a mean per pixel count of 3,749 genes and

6,535UMIs (FigureS4B).Byaggregatingbothexpressionmatrices

while preserving their individual identities, we identified 20clusters

that spatially mirrored the histological structures (Figure 4A). The

localization of these clusters revealed clear and distinctive spatial

patterns (Figure S4C). Representative cell types such as B cells,

macrophages, plasma cells, and mucus-secreting cells were

delineated based on canonical marker gene expression (Fig-

ure 4B). We noticed a faint expression of the plasma cell score

and macrophage cell score in the designated regions P and M in

Figure 4B. To validate that this signal reflects actual cellular pres-

ence rather than background noise, we conducted immunofluo-

rescence (IF) assays targeting the immunophenotypic markers

CD138 for plasma cells and CD68 for macrophages on adjacent

sections (Figure 4C). The results confirmed the cell identities,

providing further support for Patho-DBiT’s capability to detect

relatively low-abundance cell types in specific regions. Further-

more, with this improved resolution, Patho-DBiTwas able to iden-

tify vasculature among the surroundingBCL cells, distinguish lym-

phatics from neighboring smoothmuscle cells, and locate plasma

cells present in the lamina propria underneath the gastric epithe-

lium (Figure 4D). These transcriptomic neighborhoods are closely

alignedwith the tissue histological features annotated by an expe-

rienced pathologist using H&E staining.

Deep data fusion of spatial transcriptome and histological im-

age has been demonstrated to generate transcriptome-wide su-

per-resolvedexpressionmaps and further evolved toderivewhole

tissue slide-scale transcriptomic atlas.39–41 Here, we utilized the

newly developed computational pipeline iStar41 to improve spatial

gene expression mapping to the single-cell level. The iStar unsu-

pervised segmentation produced intricate molecular maps of

cells, also enabling gene expression prediction across the whole

tissue slide (Figure 4E). Overall, the spatial distributions of gene

markers formajor cell typeswere accurately alignedwith the pres-

ence of these cells as confirmedby the pathologist, with reference

to original histological sections and accompanying immunohisto-

chemical studies. Within each cell type, cellular heterogeneities

were revealed at a refined level. For example, tumor B cells

were classified into nine subtypes based on their cellular activities

and molecular signatures, while epithelial cell heterogeneities

were defined by their functional and metabolic states. The under-

lying biological relevance of each identified cluster was confirmed

by the top-rankedexpressedgeneswithin thecluster (FigureS4D).

We also calculated correlation matrices depicting the relation-

ships among iStar clusters. Similar cell types grouped together,

while divergent cell types exhibited significant negative correla-

tions, further supporting the utility of this analysis (Figure S4E).

Spatial RNA splicing dynamics reveals the trajectory of
tumor cell development
RNA velocity reconstructs dynamic gene expression changes by

leveraging the ratio of newly transcribed, unspliced pre-mRNAs
Cell 187, 1–20, November 14, 2024 7



Figure 4. High-resolution tissue architecture resolved by integrating Patho-DBiT with histology

(A) Spatial mapping of the MALT section using 20 mm Patho-DBiT device covering 100,000 spots. Left top: tissue scanning. Left bottom: H&E of an adjacent

section. Right: unsupervised clustering.

(B) Spatial identification of representative cell types.

(C) IF staining of plasma cell marker (CD138) and macrophage marker (CD68) in the selected regions P and M in (B).

(D) Representative transcriptomic neighborhoods revealed by Patho-DBiT, closely aligned with H&E tissue morphology.

(E) Super-resolved high-resolution spatial clustering and representative gene expression enhanced with iStar.

See also Figures S4 and S5.
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Figure 5. Genome-wide spatial variant profiling for differentiating malignant subclones

(A) Molecular underpinnings of detecting variations printed in pre-mRNA transcripts.

(B) Comparison of genomic location coverage bandwidth between Patho-DBiT and scRNA-seq datasets.

(C) Spatial expression map of accumulated SNVs burden.

(D) IHC staining of BCL-2 and CD43 commonly used for immunophenotyping MALT tumor cells.

(legend continued on next page)
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to mature, spliced mRNAs, with the former identifiable through

the presence of introns.6,42 Typically, bulk sequencing or

scRNA-seq datasets comprise only 15%–25% intronic se-

quences, primarily from secondary priming positions within in-

tronic regions.6 Patho-DBiT generated a higher proportion of in-

tronic reads compared with exonic ones, enhancing RNA

velocity analysis. Employing scVelo,42 we delineated transient

cellular states of all the identified clusters. While such velocity di-

rection analysis could be incorrect for cell types that are not

supposed to have any cell state transition or differentiation rela-

tionship,43 we focused our analysis exclusively on the tumor B-

cell clusters. We observed a cellular dynamics trajectory origi-

nating from C14 to C18, progressing to C6, and then extending

toward C7 (Figure S5A), potentially unveiling their differentiation

stages as defined by splicing rates. The 4 clusters exhibited no

prominent variations in cell cycle stages, also evidenced through

sparse immunohistochemistry (IHC) stainingofKi67 (FigureS5B).

Furthermore, we identified prominent genes that drove the pri-

mary processes of this dynamic behavior, with the top-ranked

genes clearly displaying higher splicing activities in C7

compared with C6, C14, and C18 (Figure S5C).

Next, we inferred a universal pseudotime shared among genes

that represents the cell’s internal clock. While all the clusters

outside the tumor region displayed a static cell fate, changes

began tomanifest fromC14 and progressively intensified toward

C7 (Figure S5D). This spatial directional transition, coupled with

the velocity flow from C14 to C7, further implies that tumor cells

in C7 pixels were produced at a later stage. Putative driver genes

contributing to this pseudotime trajectory were identified, among

which the top-ranked gene, BCL2, is a key antiapoptotic

regulator critical for lymphoma pathogenesis44 (Figure S5E).

Together, with a superior capture efficiency for intronic reads,

Patho-DBiT spatially mapped RNA splicing dynamics associ-

ated with the trajectory of malignant B-cell development.

Genome-scale spatial sequence variant profiling for
tumor discrimination
Sequence variations were common in RNA transcripts, largely

reflecting underlying genetic mutations or RNA editing, a pro-

cess frequently deregulated in cancer.45,46 By in situ poly(A)

tailing (Figure 5A), we hypothesized that Patho-DBiT could effec-

tively capture sequence variations printed in pre-mRNA tran-

scripts. Higher genomic coverage will enable more reliable

detection of sequence variants. We therefore first conducted a

comparative analysis of the genomic location coverage band-

width between Patho-DBiT and scRNA-seq datasets. Here, the

coverage percentage for each chromosome is calculated by

dividing the cumulative length of sequenced regions in anno-
(E) Unsupervised clustering of the spatial SNVs matrix and genome-wide distribu

overlap between gene and SNVs tumor clusters.

(F) WGS of the MALT section matched with a reference normal stomach sample

(G) Read count of DNA-level SNVs and Patho-DBiT detected RNA-level SNVs an

(H) Comparison of RNA variant allele frequencies in DNA-derived somatic mutat

(I) Evolutionary relationships among the identified gene clusters.

(J) Spatial distribution of top-ranked SNV sites upregulated in tumor B-cell cluste

(K) InferCNV analysis of gene expression intensity across tumor genome position

See also Figure S6.
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tated GENCODE47 transcripts by the total transcript length on

a chromosome. Our spatial FFPE MALT data showed higher

coverage capability than scRNA-seq datasets from both fresh

human cancer samples and healthy donor peripheral blood

mononuclear cells (PBMCs), allowing Patho-DBiT to capture

genome-wide sequence variations (Figure 5B).

To delineate the RNA variant profile of this MALT section, we

implemented a variant calling pipeline to identify all potential sin-

gle-nucleotide variations (SNVs). Each SNV site in a spatial pixel

was cataloged and classified based on the reference and variant

reads, overall yielding a matrix of detected SNVs (STAR

Methods). The spatial heatmap of accumulated SNVs revealed

a notably higher SNV burden in the B-cell region (Figure 5C).

The tumor signature in these B cells was validated through IHC

staining of canonical markers commonly used for immuno-

phenotyping MALT tumor cells, namely BCL-2 and CD43,48 on

adjacent sections (Figure 5D). The expression of these markers

exhibited a strong correlationwith the spatial SNV burden profile.

We explored the potential of leveraging RNA-level variants for

unsupervised tumor discrimination. Spatial clustering of the ex-

pressed SNVmatrix alone revealed 9 subpopulations (Figure 5E).

Clusters M1 and M3 exhibited notable overlap with the tumor re-

gion (Figures 5E and S6A). The principal-component analysis

(PCA) demonstrated a distinct variation profile of these 2 clusters

(Figure S6B), and the counts of genomic regions with SNV fre-

quency >0.01% were significantly higher (Figure S6C), confirm-

ing their elevated variant levels. To validate this analysis pipeline,

we performed Patho-DBiT on an FFPE lymph node section from

a healthy donor using a device with the same pixel size (Fig-

ure S6D). This revealed low SNV accumulation across the entire

section, with a relatively higher burden in some of the B-cell re-

gions, presumably due to somatic hypermutation occurring in

germinal center B cells (Figure S6E). Unsupervised clustering

of the SNV matrix revealed no spatial pattern in this donor sam-

ple (Figure S6F). To depict the genome-wide distribution of

SNVs, somatic variant calling was conducted within the M1

and M3 using pixels from the other 7 clusters as controls,

revealing a chromatin- and region-specific pattern of SNVs

(Figure 5E).

RNA-level SNVs may arise from several sources, including

DNA-level SNVs, RNA modifications, FFPE procedure, subopti-

mal storage, or sequencing errors.49,50 Although it is difficult to

accurately infer DNA-level SNVs from the RNA data, we

reasoned that by adding DNA sequencing of the same tissue,

we could determine spatial patterns of DNA-level SNVs. There-

fore, we performed bulk whole-genome sequencing (WGS) on

an adjacent MALT section paired with a reference normal stom-

ach sample from the same patient (Figure 5F). Comparing the
tion of somatic variations in clusters M1 and M3. Veen plot showing the pixel

from the same patient.

d their ratios.

ion sites across gene clusters.

rs.

s in tumor B-cell clusters.
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SNVs identified in Patho-DBiT with those found in theWGS data,

we verified that an average of 58.6% of RNA-level SNVs across

chromosomes reflect DNA-level SNVs, most of which were

germline variants (Figure 5G). We narrowed down the analysis

to only RNA-level SNV sites corresponding to somatic DNA mu-

tations and compared the RNA variant allele frequencies across

all transcriptomic clusters. Consistently, higher variant fre-

quencies were observed in the tumor B-cell-enriched clusters,

particularly in C6 and C7 (Figure 5H). We also inferred the clonal

relationship of these clusters, revealing a distinct separation be-

tween tumor clusters and normal tissue clusters (Figure 5I).

Compared with C14 and C18, the pixels in C6 and C7 likely

represent subclones with different developmental stages. Addi-

tionally, cluster C3 exhibited a close relationship with the 4 tumor

clusters, possibly reflecting its identity as a mixture of tumor B

cells and epithelial cells (Figures 4A and 5D). We then conducted

a differential SNV analysis to identify defining variant sites in

clusters C6 and C7 compared with normal tissue clusters (Fig-

ure S6G). Among the tumor region-enriched sites (Figures 5J

and S6H), TBL1XR1 emerged as a well-documented mutation

known to drive extranodal lymphoma by inducing a pro-tumori-

genic memory fate,51 MAML2 is a coactivator of NOTCH

frequently upregulated in lymphomas and leukemias,52 and

IGL alteration is a potent enhancer relevant to lymphoma-

genesis.53CD84, while it may not directly contribute to tumor for-

mation, regulates the immunosuppressive microenvironment in

hematological malignancies.54 Another notable observation is

that no sites were significantly (p value < 0.05) downregulated

in these two tumor B-cell clusters.

We further explored the use of Patho-DBiT RNA expression

data to identify evidence of somatic large-scale chromosomal

copy number variation (CNV) using inferCNV.55 Normalizing the

CNV profiles with pixels from the normal clusters revealed gains

in chromosomes 2, 6, and 16 in the tumor cluster C7 (Figure 5K).

These copy number gains were similarly observed in our WGS

data (Figures S6I and S6J), reaffirming the accuracy of Patho-

DBiT detection. Interestingly, cluster C6, as a spatial neighbor

of C7, displayed less pronounced gains in these regions. This

inconsistency with SNV evolutionary dynamics might suggest

differing contributions of CNV and SNV to the tumor clonal archi-

tecture. Collectively, these findings suggest that Patho-DBiT

possesses the capability to distinguish malignant from non-ma-

lignant cell regions in an unbiased manner without the need for

known markers. It can dissect spatial clonal architectures based

on both spatial SNV and CNV profiles.

Spatial regulatory network of microRNAs in
tumorigenesis
We next sought to assess Patho-DBiT’s capacity for co-map-

ping large and small RNAs in clinical samples. Approximately

35% of the reads were mapped to non-coding RNAs, capturing

tens to thousands of RNA molecules along with their spatial dis-

tribution (Figures S7A and S7B). A differential expression anal-

ysis comparing tumor B-cell clusters to non-tumor clusters un-

covered distinct profiles of these RNA species that may

contribute to tumorigenesis (Figure S7C; Table S2). Next, we

concentrated on the in-depth analysis of microRNAs due to their

roles in various pathologies, including cancer.56 Out of 2,300 true
human mature microRNAs,57 Patho-DBiT detected 1,352 in the

MALT section, with the count of mapped reads accurately peak-

ing at 21 nt (Figure 6A). Regarding the UMI count per pixel,

71.9% had fewer than 10 UMIs, 20.2% had 10–100 UMIs, and

the remaining 7.9% had more than 100 UMIs.

We assessed detection accuracy by examining tissue-specific

microRNAs. Based on both tissue morphology and the enriched

expression of marker genes, cells within clusters C0, C13, and

C16 were classified as smooth muscle cells58 (Figures 6B and

S4A). Two smooth muscle cell-specific microRNAs, miR-143

and miR-145,59 exhibited markedly elevated expression in these

3 clusters, with over 2,000 reads precisely mapped to the

genome location, reflecting the dominant mature strands (miR-

143-3p and miR-145-5p) from their respective pre-microRNAs

(Figure 6C). Their spatial distributions were prominently evident

in the smooth muscle cell region. MiR-142 is necessary for the

development of marginal zone B cells,60 while both miR-146a

and miR-150 are upregulated in marginal zone lymphomas.61

Consistently, a notably high expression pattern of these three

microRNAs was observed in the tumor B-cell region of the

MALT section (Figure S7D).

To further elucidate the regulatory role of microRNAs in tumor-

igenesis, we conducted a differential microRNA expression

analysis between the tumor and non-tumor regions. Among

the upregulated microRNAs in the tumor region is miR-21, a

well-characterized cancer-promoting ‘‘oncomiR,’’62 along with

the abovementioned lymphoma-enriched microRNAs (Fig-

ure 6D). By contrast, miR-134 and miR-149, two microRNAs

known to suppress the proliferation and metastasis of multiple

cancer cells,63,64 were significantly downregulated in the tumor

region. Regulatory network analysis revealed positive correla-

tions between the top upregulated microRNAs and multiple

genes implicated in lymphomagenesis (Figure 6E), including

NCL encoding a BCL-2 mRNA binding protein,65 oncogenic

lncRNA SHG7,66 and EEF1A1, potentially contributing to tumor

initiation and progression.67 Conversely, a broad array of genes

exhibited negative correlations with these microRNAs, espe-

cially miR-21 and miR-4472-2. While miR-4472 has been re-

ported for its role in fostering tumor aggressiveness in breast

cancer,68 our data suggest its potential involvement in this unre-

lated tumor type. Likewise, interaction analysis was conducted

for the top downregulated microRNAs in the tumor region, eluci-

dating how these regulations influence the transcriptomic signa-

tures of tumor B cells (Figure S7E).

We also performed detailed regulatory analysis withmiR-21 as

the initial example. This microRNA was inferred to significantly

regulate 536 genes in the tumor region, with 82.46% identified

as cancer-related according to the ingenuity pathway analysis

(IPA) database69 (Figure 6F). As an oncomiR known for its pivotal

role in the initiation and development of various B-cell malig-

nancies,70 miR-155 exhibited significantly higher expression in

the tumor region, accompanied by precise genome location

mapping and spatial distribution (Figure 6G). This microRNA, be-

ing a transactivational target of NF-kB,71 contributes to the pro-

motion of PI3K-AKT signaling pathway in BCL.72 Of 200 NF-kB

signaling genes defined by gene set enrichment analysis

(GSEA), 136 positively correlated with miR-155 (Figure S7F).

Similarly, 65 out of 105 genes linked to PI3K-AKT signaling
Cell 187, 1–20, November 14, 2024 11



Figure 6. Spatial microRNA regulations in the MALT section

(A) MicroRNAs detected by Patho-DBiT in the MALT section. The pie chart illustrates the percentage distribution of the detected count number per spatial pixel.

(B) Spatial distribution of the smooth muscle cell score.

(C) Spatial mapping of smooth muscle cell-specific miR-143 and miR-145.

(D) Differentially expressed microRNAs between the tumor and non-tumor regions.

(E) Regulatory network between the top upregulated microRNAs and the gene expression in the tumor region.

(F) Spatial expression, read coverage, and regulatory relationship of miR-21.

(G) Spatial expression, read coverage, and expression comparison between tumor and non-tumor regions of miR-155. Significance level was calculated with

two-tailed Mann-Whitney test, **** p < 0.0001.

(H) Spatial interactions involving miR-155 and its upstream and downstream signaling pathways. The Pearson correlation was calculated across 1,366 spatial

pixels within the tumor B-cell region.

See also Figure S7 and Table S2.
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showed a positive correlation with miR-155 (Figure S7G). The

spatial correlation betweenmiR-155 and both signaling pathway

scores across 1,366 tumor cluster pixels yielded Pearson corre-

lation coefficients of 0.52 and 0.56, respectively (Figure 6H).

Taken together, Patho-DBiT enables spatially resolved co-

profiling of large and small RNAs, facilitating the analysis of a mi-

croRNA regulatory network in the clinical biopsy.
12 Cell 187, 1–20, November 14, 2024
Mapping the spatial evolution of tumor progression at
the cellular level
We extended our analysis by spatially mapping gastric fundus

nodule biopsy sections using cellular-level 10 mmpixel-sized de-

vices. Collected from the same patient depicted in Figure 4 at the

same time, this biopsy showed diffuse large BCL (DLBCL), likely

arising from the indolent MALT lymphoma precursor. A diffuse

mailto:Image of Figure 6|tif


Figure 7. Cellular-level spatial mapping of a DLBCL section elucidates tumor progression

(A) Spatial transcriptome mapping of the DLBCL biopsy. Sections from two different regions underwent 10 mm microfluidic barcoding.

(B) Super-resolved high-resolution spatial clustering and representative gene expression enhanced with iStar.

(C) Left: schematic illustration showing comparative analysis. Right: signaling pathways regulated by DEGs between tumor B cells in DLBCL vs. MALT biopsy.

(legend continued on next page)
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sheet of atypically large lymphocytes, extending from superficial

glandular structures to the deep margin, was observed (Fig-

ure S8A). Predominantly large and pleomorphic, the tumor B

cells confirmed by IHC staining (Figure S8B) exhibited irregular

nuclear contours, dispersed chromatin, and a moderate amount

of cytoplasm, with frequent mitoses.

Tissue sections from two distinct regions were selected for

spatial barcoding, detecting an exonic average pixel count of

2,292 genes and 6,021 UMIs in region 1, and 1,507 genes and

3,466 UMIs in region 2 (Figures 7A and S8C). Unsupervised clus-

tering of region 1 identified two similar B-cell clusters, distin-

guished by differential gene expression patterns (Figure S8D).

In region 2, a more intricate spatial organization of diverse cell

types, including B cells, macrophages, and mucus-secreting

cells, was identified (Figures S8E and S8F). This cellular-level

mapping revealed a neighborhood comprising various subtypes

of gastric mucous cells (clusters 4, 7, and 8) infiltrated with

plasma cells (cluster 6), closely mirroring the H&E-defined tissue

morphology of an adjacent section (Figure S8E). The spatial clus-

tering of region 2 was further refined through computational

enhancement using iStar (Figures 7B and S8G). This analysis

notably identified intrinsic heterogeneities among mucus-

secreting cells, identifying cluster 4 asMUC6+ chief cells, cluster

5 as surface mucous cells, and cluster 8 as mucous neck cells,

fully verified by histopathology.

Thoughtfully selected low-grade MALT and high-grade

DLBCL biopsies collected from different anatomical sites at

the same time point enabled us to elucidate the spatial molecular

dynamics propelling tumor progression. Comparative analysis of

gene expression profiles revealed a significant upregulation of

NF-kB signaling and its associated upstream and downstream

pathways, while tumor suppression pathways, including p53,

p14/p19ARF, and PTEN, exhibited notable inhibition (Figure 7C).

We observed elevated expression of a range of key genes

involved in the NF-kB signaling pathway, particularly AKT1,

IKBKB, PIK3C3, and PIK3R5 (Figure 7D). The considerable NF-

kB activation, a hallmark of aggressive DLBCL,73 could be asso-

ciated with their significantly active c-Myc (MYC) signaling,

spatially concentrated in the tumor B-cell zone (Figure S8H).

This was confirmed by pronounced c-Myc IHC staining (Fig-

ure S8I). We also found a strong positive correlation between

MYC signaling and miR-21 expression (Figure S8J), aligning

with the documented role of c-Myc in activating miR-21 by

directly binding to its promoter.74 The coordinated upregulation

of these signaling pathways, functional molecules, and their net-

works contributes to the high proliferative index in the DLBCL
(D) Expression comparison of key genes involved in the NF-kB signaling betwee

(E) IHC staining for Ki67 on adjacent sections from the two biopsies.

(F) Spatial expression mapping of genes encoding plasma cell kappa and lambd

(G) ISH staining for kappa and lambda chain mRNA in the designated area in (F)

(H) Distance distribution between macrophages and tumor B cells in the two biop

p < 0.0001.

(I) Signaling pathways regulated by DEGs between macrophages in DLBCL vs. M

(J) IHC staining for CD206 on an adjacent section from the DLBCL and MALT bio

(K) Ligand-receptor interactions between macrophage cluster 1 and tumor B-cel

the integrin family genes is indicated and spatially visualized.

In (C) and (I),Z score is computed and used to reflect the predicted activation level

See also Figure S8.
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section, indicated by its high Ki67 activity (�70%) compared

with the MALT section (<10%) (Figure 7E).

The detection of B-cell clonality has proven valuable for diag-

nosing BCLs.75 In the MALT biopsy, a comparable level of the

kappa chain constant domain gene IGKC and lambda chain

genes (IGLC1, IGLC2, IGLC3) was observed and confirmed by

ISH stain for kappa and lambda mRNA (Figures 7F and 7G).

The finding of polytypic light chains in this biopsy is likely due

to the indolent stage, where no clone dominates yet and rela-

tively less plasmacytic differentiation. However, in the pro-

gressed DLBCL biopsy, the plasma cells were mostly kappa

type, represented by a dominant expression of IGKC (Figure 7F),

which could be associated with greater differentiation status.

Consistently, we observed a significant upregulation of path-

ways linking inflammation to cancer and involved in tumor cell

survival and malignant progression, alongside a downregulation

of principal tumor suppression pathways in the DLBCL plasma

cells compared with those in the MALT counterpart

(Figures S8K and S8L).

Finally, we investigated the molecular profile of macrophages

and their spatial interactionwith tumor cells. In theMALT section,

macrophages in cluster C17 remained distantly positioned from

the tumor zone (Figure 4A). By contrast, a profound infiltration of

macrophages (cluster 1) into the tumor region (clusters 2/5) was

observed in the DLBCL section (Figure S8E), resulting in a signif-

icantly reduced macrophage-tumor distance in the latter (Fig-

ure 7H). The DEGs between macrophages in DLBCL and

MALT regulated a significant activation of the macrophage alter-

native activation signaling pathway (Figures 7I and S8M).

Associated pathways involved in intercellular communications,

metabolic modulations, and intracellular responses were also

affected. To validate this finding, we performed IHC staining

for CD206, a widely used marker for identifying alternative mac-

rophages,76 and observed positively stained cells with a distribu-

tion largely consistent with the transcriptomic data (Figure 7J).

By contrast, no signal was detected in either the macrophage-

enriched regions or the tumor B-cell region in the MALT biopsy.

The deeper exploration of ligand-receptor interactions shed light

on the communication network between macrophages and B

cells. This analysis unveiled a plethora of crucial pairs activated

within the DLBCL microenvironment (Figure 7K), highlighting the

potential role of APOE-LRP1 pair in metabolic shaping of the

conversion from classic M1 to alternative M2 macrophage,77

CXCL9-CXCR3 axis in orchestrating the recruitment of effector

T cells,78 and VEGFC-IL6ST pair in fostering tumor lymphangio-

genesis.79 A noteworthy interaction was the crosstalk between
n DLBCL vs. MALT biopsy.

a chains in the two biopsies.

.

sies. Significance level was calculated with two-tailed Mann-Whitney test, ****

ALT biopsy.

psy.

l clusters 2 and 5. The distinctive communication pattern between TGFB1 and

(z > 0, activated; z< 0, inhibited; zR 2 or z%� 2 can be considered significant).
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TGFB1 and the integrin family genes, potentially instigating the

formation of pro-tumorigenic M2-macrophages.80 The spatial

expression pattern of this interaction can be distinctly visualized.

Collectively, Patho-DBiT empowers us to spatially map the mo-

lecular evolution from low-grade to high-grade tumor at single-

cell level, deepening our understanding of the complex inter-

plays shaping the tumor microenvironment in transformed large

BCLs.

DISCUSSION

Herein, we developed Patho-DBiT, a powerful technology

enabling spatial exploration of rich RNA biology in FFPE tissues.

Combining polyadenylation with spatial deterministic barcoding

empowered high-yield, genome-wide detection of various RNA

species, notably enhancing the capture of small non-coding

RNAs lacking poly(A) tails. We demonstrated this ability by

spatially profiling the expression of microRNAs. Patho-DBiT

not only aligns reads to pre-microRNA regions but also accu-

rately demarcates the boundaries of known dominantmaturemi-

croRNA strands produced from the pre-microRNA hairpins.

Interestingly, our own head-to-head comparative evaluation re-

vealed that microRNA profiling performance was less satisfac-

tory in frozen embryos. The reason why small RNAs such as mi-

croRNAs are well preserved in aged FFPE blocks is yet to be

further investigated, but it may be due to the formalin fixing

step that protects RNA-binding proteins, such as the Argonaute

family, which bind to mature microRNAs. Beyond profiling gene

expression, Patho-DBiT enables spatial profiling of post-tran-

scriptional RNA processing, including alternative splicing and

A-to-I RNA editing. The spatial patterns were cross-validated

with a dataset from frozen mouse brain sections using long-

read sequencing,29 confirming the accurate molecular detection

by Patho-DBiT rather than modifications arising from the FFPE

preparation process.

Pathology has evolved significantly with technological ad-

vances, moving from microscopic observation to sophisticated

genomic analysis. Patho-DBiT enabled high-sensitivity spatial

transcriptomics profiling of a 5 year archival AITL sample, facili-

tating a faithful reconstruction of spatial cellular compositions

and the identification of AITL-specific molecular pathways. In

the characterization of a 3 year archival MALT tissue, Patho-

DBiT showcased its prowess in extracting a wealth of informa-

tion from a single run, ranging from exonic mRNA expression,

genome-scale SNVs, microRNA regulatory networks, and

splicing dynamics, with rigorous validation of accuracies using

traditional staining methods including H&E, IHC, IF, ISH, and

DNA data fromWGS. The result is a finely crafted spatial molec-

ular landscape that serves as a powerful resource for patholo-

gists to disentangle the intricate process underlying MALT

tumorigenesis.

Patho-DBiT holds the potential to revolutionize the analysis of

human pathology by revealing vulnerabilities in the structural

supports of tumors. As demonstrated in this study of indolent

MALTand aggressiveDLBCLcases, the samepatient can harbor

similar B-cell tumor cells that take advantage of different micro-

environments to survive and proliferate. Current clinical diag-

nostic practice incorporates only bulk sequencing, if at all,
coupledwith histopathology, IHC, anda few routine fluorescence

in situ hybridization studies. In situRNAprofiling gives insight into

cellular neighborhoods and their interactions. New tools such as

Patho-DBiTmay allow for a deeper genomic dive that can poten-

tially help clinicians locate the specific cancer cell genotypes or

clonotypes implicated in disease evolution and drug resistance.

Further inclusion of spatial RNA profiling will enable us to dissect

biological pathways, predict which clonesmay evade drug treat-

ment, identify patient-specific combination therapies, and strate-

gically deploy different immune cells for immunotherapy.81 For

example, Figure S8K shows thatROCK1 is themost upregulated

gene in aggressive lymphoma comparedwith the indolent form in

the samepatient’s plasmacells.While drugs likebelumosudil,82 a

ROCK1/2 inhibitor, are being tested in plasma cell neoplasms,

our datamay suggest the off-label use of belumosudil as a poten-

tial precision medicine approach to treat this patient.

Limitations of the study
Compared with state-of-the-art technologies in sequencing-

based spatial transcriptomics,83–86 Patho-DBiT alone lacks sin-

gle-cell resolution. Recognizing the value of histological images

in identifying spatial patterns and the latest advances in machine

learning for deep data fusion, we applied iStar to derive super-

resolved single-cell-level transcriptome maps. Future advance-

ments in device design and fabrication may further improve

mapping resolution without compromising mapping area. Addi-

tionally, our alternative splicing analysis faces low coverage at

the pixel level. Recently, Spatial VDJ technology has mapped

full-length B-cell and T-cell receptor sequences in frozen human

tissues.87 To enhance spatial quantification of antigen receptor

sequences, hybridization capture probes were directed at the

targeted regions to enrich transcripts of interest. We anticipate

that incorporating this strategy into Patho-DBiT could improve

the detection and quantification of transcript isoforms. To

harness emerging genomic knowledge and bring it to bear on

current pathology diagnostics, newly developed tools like

Patho-DBiTmust undergo thorough testing and validation on pa-

tient samples. FFPE specimens stored for up to 32 years have

proven to be a promising source of RNA for gene expression

quantification.88 Given Patho-DBiT’s success in appending

poly(A) tails to small microRNAs and yielding accurate spatial

profiles, we envision its potential for spatial analysis of FFPE pa-

tient samples with ultralong storage times.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Purified anti-human CD68 Recombinant Antibody Biolegend Cat#118212; RRID: AB_2922613

Alexa Fluor 594 anti-human CD138

(Syndecan-1) Antibody

Biolegend Cat#352323; RRID: AB_2728336

Alexa Fluor 647 anti-human CD20 Antibody Biolegend Cat#382803; RRID: AB_3068232

CODEX antibodies Akoya Biosciences See Table S4

Biological samples

Mouse C57 Embryo E13 Paraffin Tissue Sections Zyagen MP-104-13-C57

Mouse C57 Brain Reg.9 Paraffin Tissue Sections Zyagen MP-201-09-C57

Mouse C57 Brain Reg.9 Paraffin Tissue Sections Zyagen MP-201-09-C57

Mouse C57 Lymph nodes Paraffin Sections Zyagen MP-703-C57

Human lymphoma FFPE tissue blocks Yale Pathology Tissue Services https://medicine.yale.edu/

pathology/research/ypts/

Chemicals, peptides, and recombinant proteins

Acetone Sigma-Aldrich 179124-500ML

SU-8 photoresist MicroChem SU-8 2010 or 2025

Chlorotrimethylsilane Sigma-Aldrich 89595-10X1ML

Polydimethylsiloxane (PDMS) Dow Silicones Corporation GMID: 02065622

Tris-HCl pH 8.0 Sigma-Aldrich T2694-100ML

5M NaCl Thermo Fisher Scientific AM9759

0.5M EDTA Life technologies 15575-038

Xylene Sigma-Aldrich 247642-4L-CB

Ethanol Sigma-Aldrich E7023-500ML

Antigen retrieval buffer abcam ab93684

Triton X-100 Sigma-Aldrich T8787-50ML

DPBS Gibco 14190-144

Nuclease-free water Thermo Fisher Scientific AM9932

RNase Inhibitor Qiagen Y9240L

E. coli Poly(A) Polymerase New England Biolabs M0276L

SUPERase,In RNase Inhibitor Thermo Fisher Scientific AM2694

Maxima H Minus Reverse Transcriptase Thermo Fisher Scientific EP0753

dNTP Mix Thermo Fisher Scientific R0192

NEBuffer 3.1 New England Biolabs B6003S

T4 DNA ligase New England Biolabs M0202L

SDS Sigma-Aldrich 71736-500ML

Proteinase K, recombinant, PCR grade Thermo Fisher Scientific EO0491

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich 10837091001

Dynabead MyOne Streptavidin C1 Thermo Fisher Scientific 65001

Tris-HCl pH 7.5 Sigma-Aldrich T2694-100ML

Tween-20 AmericanBio AB02038-00500

20% Ficoll PM-400 Sigma-Aldrich F5415-25ML

2X KAPA HiFi HotStart ReadyMix KAPA Biosystems KK2602

20X EvaGreen Plus Dye VWR International 76423-470

SPRIselect beads Beckman Coulter B23318

Formaldehyde Thermo Fisher Scientific BP53125

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bovine serum albumin Sigma-Aldrich A7030

DAPI Solution Thermo Fisher Scientific 62248

Mm_Gapdh_3_SG QuantiTect Primer Assay Qiagen QT01658692

Mm_Actb_2_SG QuantiTect Primer Assay Qiagen QT01136772

Fetal Bovine Serum Thermo Fisher Scientific 10438026

Penicillin-Streptomycin-Glutamine (100X) Thermo Fisher Scientific 10378016

Recombinant Mouse IL-3 Biolegend 575504

Critical commercial assays

D5000 ScreenTape Assay Agilent Technologies 50675588 and 5589

SEQuoia RiboDepletion Kit BIO-RAD 17006487

DNeasy Blood & Tissue Kit Qiagen 69504

Deposited data

Raw and processed sequencing data This paper GSE274641

Original code This paper https://github.com/Zhiliang-

Bai/Patho-DBiT

Oligonucleotides

Primers, ligation linkers, and DNA barcodes IDT See Table S3

Primers targeting Rrna IDT See Table S5

Software and algorithms

QuPath V0.5.0 Bankhead et al.89 https://qupath.github.io/

Cutadapt V3.4 Martin90 https://cutadapt.readthedocs.io/en/v3.4/

STAR V2.7.7a Dobin et al.91 https://github.com/alexdobin/

STAR/releases/tag/2.7.7a

ST_Pipeline V1.7.6 Navarro et al.92 https://github.com/

SpatialTranscriptomicsResearch/

st_pipeline

GENCODE Frankish et al.47 https://www.gencodegenes.org/

GtRNAdb Chan et al.93 https://gtrnadb.ucsc.edu/

RNAcentral Petrov et al.94 https://rnacentral.org/

RStudio V2023.06.2+561 RStudio https://posit.co/download/

rstudio-desktop/

R V4.3.1 CRAN https://www.r-project.org/

Seurat V4 Hao et al.95 https://satijalab.org/seurat/

RSeQC package V5.0.1 Wang et al.96 https://rseqc.sourceforge.net/

miRBase Kozomara et al.97 https://www.mirbase.org/

Integrative Genomics Viewer (IGV) Robinson et al.98 https://igv.org/

rMATS-turbo pipeline V4.1.2 Shen et al.23 https://github.com/Xinglab/rmats-turbo

REDIportal V2.0 Picardi et al.99 http://srv00.recas.ba.infn.it/atlas/

samtools V1.16.1 Danecek et al.100 https://github.com/samtools/samtools

iStar Zhang et al.41 https://github.com/daviddaiweizhang/istar

bedtools V 2.31.0 Quinlan et al.101 https://github.com/arq5x/bedtools2

scVelo Bergen et al.42 https://scvelo.readthedocs.io/en/stable/

Strelka V2.9.10 Kim et al.102 https://github.com/Illumina/strelka

BWA V0.7.17 Li et al.103 https://github.com/lh3/bwa

GATK V4.2.0.0 Data Sciences Platform

at the Broad Institute

https://gatk.broadinstitute.org/hc/en-

us/sections/4405443482011-4-2-2-0

ggtree V3.8.2 Xu et al.104 https://www.bioconductor.org/packages/

release/bioc/html/ggtree.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

inferCNV V1.16.0 inferCNV of the

Trinity CTAT Project

https://github.com/broadinstitute/

inferCNV/wiki

CNVkit V0.9.11 Talevich et al.105 https://cnvkit.readthedocs.io/en/stable/

Connectome V1.0.0 Raredon et al.106 https://msraredon.github.io/Connectome/

Ingenuity Pathway Analysis (IPA) Krämer et al.69 https://digitalinsights.qiagen.com/

products-overview/discovery-insights-

portfolio/analysis-and-visualization/

qiagen-ipa/

Prism V9 GraphPad https://www.graphpad.com/

Other

Poly-L-Lysine Slide Electron Microscopy Sciences 63478-AS

Chrome photomask Front Range Photomasks N/A

Silicon wafer WaferPro C04004

EVOS M7000 Imaging System Thermo Fisher Scientific AMF7000

DNA low-bind tube Eppendorf SE 022431021

TapeStation 4150 Agilent Technologies G2992AA

NovaSeq 6000 Sequencing System Illumina N/A

CODEX PhenoCycler-Fusion Akoya Biosciences N/A

Leica TCS SP5 Confocal microscope Leica Microsystems N/A

CFX Connect Real-Time System BIO-RAD N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient specimens
De-identified archival formalin-fixed paraffin-embedded (FFPE) human lymphoma tissue blocks, originally collected by physicians for

diagnostic purposes, were sourced from the Yale Pathology Tissue Services (YPTS), a Pathology-based Central Tissue Resource

Lab that provides comprehensive tissue-related services and materials in de-identified format for investigators at Yale University.

The tissue collection was conducted with Yale University Institutional Review Board approval with oversight by Tissue Resource

Oversight Committee. Written informed consent for participation, including cases where identification was collected alongside the

specimen, was obtained from patients or their guardians, adhering to the principles of the Declaration of Helsinki. Each sample

was handled in strict compliance with HIPAA regulations, University Research Policies, Pathology Department diagnostic require-

ments, and Hospital by-laws. The excisional biopsy from the left upper arm subcutaneous nodule was collected and embedded

in 2018 from a patient presenting with angioimmunoblastic T-cell lymphoma (AITL) in multiple lymph nodes and subcutaneous sites.

Biopsies from the gastric antrum revealing marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) and the fundus

nodule indicating diffuse large B-cell lymphoma (DLBCL) were collected and embedded in 2020. These biopsies were obtained from

a patient who incidentally presented with retroperitoneal lymphadenopathy during imaging originally performed for an orthopedic

visit. Upper endoscopy revealed multiple areas of erosion in the stomach, and a breath test for H. pylori was positive.

Surgical pathology report of the lymphoma biopsies
The AITL sections show a sheet of lymphocytes, some with atypical morphology. There are thick and thin bands of fibrosis and inter-

spersed blood vessels. The atypical cells have irregular to round nuclei, speckled chromatin, variable small nucleoli, and a small

amount of cytoplasm. There is infiltration into the adjacent fat. Significant mitotic figures, apoptotic figures, or necrosis is not iden-

tified. The atypical cells are CD3-positive T cells that are positive for CD4, CD2, CD5, CD10, CXCL13, and PD-1. They are negative for

CD25 and CD8with partial loss of CD7. There are abundant background CD20-postive B cells. The Ki-67 proliferation index is overall

approximately 20-30%. T cell gene rearrangement was positive, showing same peaks as other sites of involvement. Flow cytometric

analysis reveals CD4+ T cells are increased in the specimen, representing about 36% of total lymphocytes with few CD8+ elements

detected. In addition, CD4+ T cells possess an abnormal immunophenotype.

The MALT sections reveal gastric antral mucosa with numerous lymphoid follicles showing monotonous small lymphocytes that

demonstrate ovoid nuclei, condensed chromatin, and indistinct nucleoli. No large cell component is seen in this part. The tumor cells

are CD20 positive B cells that co-express BCL-2 and CD43, are negative for CD5, CD10, BCL-6, CD23, LEF1, and cyclinD1. Ki-67 is

low at <10%. CD3 highlights scattered small T cells. H.pylori immunostaining is negative.

The DLBCL sections reveal sheets of large pleomorphic lymphocytes, some with horseshoe shaped nuclei, dispersed chromatin,

prominent nucleoli, and moderate amount of eosinophilic cytoplasm. There are numerous eosinophils in the background and no
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substantial small cell lymphoma. The tumor cells are positive for CD20, CD43, and MUM1 and negative for CD10, cyclinD1, and

CD30. BCL-6 is faintly expressed in <20% of cells. C-myc is expressed in >80% of tumor cells and BCL-2 is expressed in >70%

of cells. Ki-67 proliferation index is approximately 70%. CD3 positive small T cells are scattered. Para-aortic lymph node biopsy per-

formed simultaneously shows involvement by metastatic DLBCL.

Mouse paraffin tissues
The mouse E13 embryo, caudal hippocampus coronal brain/Region.9, and lymph node sections were purchased from Zyagen (San

Diego, CA). The in-house Institutional Animal Care and Use Committee of Zyagen review and approve all protocols. Tissues were

freshly harvested from C57BL/6 mice fixed in 10% Neutral Buffered formalin and processed for embedding in low temperature

melting paraffin. All tissue preparation steps from harvesting to embedding in paraffin were done in RNase-, DNase-, and prote-

ase-free conditions. Tissue sections were hematoxylin and eosin (H&E) stained and examined by histologists with extensive expe-

rience to be sure of excellent morphology and high quality.

Sample handling and section preparation
For both human and mouse samples, paraffin blocks were sectioned at a thickness of 7-10 mm andmounted on the center of Poly-L-

Lysine coated 1 x 3" glass slides. Serial tissue sections were collected simultaneously for Patho-DBiT and other staining. The

sectioning of lymphoma patient samples was carried out at YPTS, while mouse sectioning was performed by Zyagen technicians.

Paraffin sections were shipped in tightly closed slide boxes or slide mailers at room temperature and stored at � 80�C upon receipt

until use.

METHOD DETAILS

Fabrication of microfluidic device
The comprehensive fabrication process, employing standard soft lithography, has been detailed in our previous publication.14 Briefly,

high-resolution chrome photomasks with a customized pattern were printed and ordered from Front Range Photomasks (Lake Ha-

vasu City, AZ). Upon receipt, the masks underwent cleaning with acetone to remove any dirt or dust. Master wafers were then pro-

duced using SU-8 negative photoresist (SU-2010 or SU-2025) on silicon wafers following the manufacturer’s guidelines, with feature

width of 50 mm, 20 mm, or 10 mm. The newly fabricated wafers were treated with chlorotrimethylsilane for 20 minutes to develop high-

fidelity hydrophobic surfaces. Subsequently, polydimethylsiloxane (PDMS) microfluidic chips were fabricated through a replication

molding process. The base and curing agents were mixed thoroughly with a 10:1 ratio following the manufacturer’s guidelines and

poured over the master wafers. After degassing in the vacuum for 30 min, the PDMS was cured at 70�C for at least 2 hours. The so-

lidified PDMS slab was cut out, and the inlets and outlets were punched for further use.

DNA barcodes annealing
DNA oligos used in this study were procured from Integrated DNA Technologies (IDT, Coralville, IA) and the sequences were listed in

Table S3. Barcode (100 mM) and ligation linker (100 mM) were annealed at a 1:1 ratio in 2X annealing buffer (20 mM Tris-HCl pH 8.0,

100 mM NaCl, 2 mM EDTA) with the following PCR program: 95�C for 5 min, slow cooling to 20�C at a rate of � 0.1�C/s, followed by

12�C for 3 min. The annealed barcodes can be stored at � 20�C until use.

Tissue deparaffinization and decrosslinking
Tissue section was retrieved from the � 80�C freezer and equilibrated to room temperature for 10 minutes until all moisture dissi-

pated. Following this, the tissue slide underwent a 1-hour baking process at 60�C to facilitate softening and melting of the paraffin.

Removal of paraffin was achieved by immersing slides in Xylene for two changes, followed by rehydration in a series of ethanol di-

lutions, including two rounds of 100%ethanol and once each of 90%, 70%, and 50%ethanol, culminating in a final washwith distilled

water. Each step was performed for a duration of 5 min. Subsequently, the tissue slide was submerged in 1X antigen retrieval buffer

and subjected to steaming using boiling water for 30 minutes, followed by a 30-minute cooldown to room temperature. After a brief

dip in distilled water, intact tissue scan was captured using a 10X objective on the EVOS M7000 Imaging System.

Permeabilization, in situ polyadenylation, and reverse transcription
The tissue was permeabilized for 20 min at room temperature with 1% Triton X-100 in DPBS, followed by 0.5X DPBS-RI (1X DPBS

diluted with nuclease-free water, 0.05 U/mL RNase Inhibitor) wash to halt permeabilization. The tissue slide was then air-dried and

equipped with a PDMS reservoir covering the region of interest (ROI). In situ polyadenylation was performed using E. coli Poly(A) Po-

lymerase. Initially, samples were equilibrated by adding 100 mL wash buffer (88 mL nuclease-free water, 10 mL 10X Poly(A) Reaction

Buffer, 2 mL 40 U/mL RNase Inhibitor) and incubating at room temperature for 5 min. Following wash buffer removal, 60 mL of the

Poly(A) enzymatic mix (38.4 mL nuclease-free water, 6 mL 10X Poly(A) Reaction Buffer, 6 mL 5U/mL Poly(A) Polymerase, 6 mL

10mM ATP, 2.4 mL 20 U/mL SUPERase,In RNase Inhibitor, 1.2 mL 40 U/mL RNase Inhibitor) was added to the reaction chamber

and incubated in a humidified box at 37�C for 30 min. To remove excessive reagents, the slide was dipped in 50 mL DPBS and

shake-washed for 5 min after the reaction. Subsequently, 60 mL of the reverse transcription mix (20 mL 25 mM RT Primer, 16.3 mL
e4 Cell 187, 1–20.e1–e9, November 14, 2024
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0.5X DPBS-RI, 12 mL 5X RT Buffer, 6 mL 200U/mL Maxima H Minus Reverse Transcriptase, 4.5 mL 10mM dNTPs, 0.8 mL 20 U/mL

SUPERase,In RNase Inhibitor, 0.4 mL 40 U/mL RNase Inhibitor) was loaded into the PDMS reservoir and sealed with parafilm. The

sample was incubated at room temperature for 30 min and then at 42�C for 90 min, followed by a 50 mL DPBS wash as described

before.

Spatial barcoding with microfluidic devices
To ligate barcode A in situ, the first PDMS device wasmeticulously positioned atop the tissue slide, aligning the center channels over

the ROI. The chip was imaged to record the positions for downstream alignment and analysis. Afterwards, an acrylic clamp was

applied to firmly secure the PDMS to the slide, preventing any inter-channel leakage. The ligationmix, comprising 100 mL 1XNEBuffer

3.1, 61.3 mL nuclease-free water, 26 mL 10X T4 ligase buffer, 15 mL T4DNA ligase, 5 mL 5%Triton X-100, 2 mL 40 U/mLRNase Inhibitor,

and 0.7 mL 20 U/mL SUPERase,In RNase Inhibitor, was then prepared. For the barcoding reaction, 5 mL of the ligation solution, con-

taining 4 mL ligation mix and 1 mL 25 mMDNA barcode A, was introduced into each of the 50 or 100 inlets. The solution was withdrawn

to flow through the entire channel using a delicately adjusted vacuum. After a 30-minute incubation at 37�C, the PDMS chip was

removed, and the slide was washed with 50 mL DPBS. Subsequently, the second PDMS device, featuring 50 or 100 channels

perpendicular to the first PDMS, was attached to the ROI on the air-dried slide. A bright-field image was captured, and the ligation

of barcode B set was performed similarly. Finally, after five flow-washes with 1 mL nuclease-free water to remove residual salt, the

final scan was conducted to record the microchannel marks imprinted onto the tissue ROI.

Tissue lysis and cDNA extraction
The barcoded tissue ROI was enclosed with a clean PDMS reservoir and securely clamped using acrylic chips. A 2X lysis buffer was

prepared in advance, consisting of 20 mM Tris-HCl pH 8.0, 400 mMNaCl, 100 mM EDTA, and 4.4% SDS. For tissue digestion, 70 mL

of the lysis mix (30 mL 1X DPBS, 30 mL 2X lysis buffer, 10 mL 20 mg/mL Proteinase K solution) was loaded into the PDMS reservoir,

sealed with parafilm, and incubated in a humidified box at 55�C for 2 hours. After the reaction, the parafilm was removed, and all

the liquid containing cDNA was collected into a 1.5mL DNA low-bind tube. Additionally, 40 mL of fresh lysis mix was loaded into

the reservoir to collect any remaining cDNAmaterial. The tissue lysate was incubated overnight at 55�C to completely reverse cross-

links, after which it could be stored at � 80�C until the subsequent steps.

cDNA purification, template switch, and PCR amplification
To inhibit Proteinase K activity, 5 mL of 100 mM phenylmethylsulfonyl fluoride (PMSF) in ethanol was introduced into the lysate and

incubated at room temperature for 10 min with rotation. Following this, �35 mL of nuclease-free water was added to adjust the total

volume to 150 mL. The cDNAwas purified using 40 mL of DynabeadsMyOne Streptavidin C1 beads resuspended in 150 mL of 2X B&W

buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 2 M NaCl). The mixture was incubated at room temperature for 60 min with rotation to

ensure sufficient binding, followed by magnetic separation and two washes with 1X B&W buffer with 0.05% Tween-20, and an addi-

tional twowasheswith 10mMTris-HCl pH 7.5 containing 0.1%Tween-20. Streptavidin beads boundwith cDNAmoleculeswere then

resuspended in 200 mL of TSO Mix (75 mL nuclease-free water, 40 mL 5X RT buffer, 40 mL 20% Ficoll PM-400, 20 mL 10mM dNTPs,

10 mL 200U/mL Maxima H Minus Reverse Transcriptase, 5 mL 40 U/mL RNase Inhibitor, 10 mL 100 mM TSO Primer). The template

switch reaction was conducted at room temperature for 30 min and then at 42�C for 90 min with gentle rotation. After a single

wash with 10 mM Tris-HCl pH 7.5 containing 0.1% Tween-20 and another wash with nuclease-free water, the beads were resus-

pended in 200 mL of PCR Mix (100 mL 2X KAPA HiFi HotStart ReadyMix, 84 mL nuclease-free water, 8 mL 10 mM PCR Primer 1,

8 mL 10 mM PCR Primer 2). This suspension was then distributed into PCR stripe tubes. An initial amplification was conducted

with the following PCR program: 95�C for 3 min, cycling five times at 98�C for 20 s, 63�C for 45 s, 72�C for 3 min, followed by an exten-

sion at 72�C for 3 min and 4�C hold. Followingmagnetic removal of the beads, 19 mL of the PCR solution was combined with 1 mL 20X

EvaGreen for quantitative real-time PCR (qPCR) analysis using the same program. The remaining samples underwent further

amplification, with the cycle numbers determined by 1/2 of the saturated signal observed in qPCR results. The PCR product was

then purified using SPRIselect beads at a 0.8X ratio, adhering to the standard manufacturer’s instructions. The resulting cDNA am-

plicon underwent analysis using a TapeStation system with D5000 DNA ScreenTape and reagents. This stage provides a secure

stopping point, allowing the sample to be stored at � 20�C until the next steps.

rRNA removal, library preparation, and sequencing
The SEQuoia RiboDepletion Kit was employed to eliminate fragments derived from rRNA andmitochondrial rRNA from the amplified

cDNA product, following the manufacturer’s guidelines. Based on the TapeStation readout profile, 20 ng of cDNA was used as the

input amount, and three rounds of depletion were performed. Subsequently, 7 cycles of the aforementioned PCR program were

executed to directly ligate sequencing primers, using a 100 mL system consisting of 50 mL 2X KAPA HiFi HotStart ReadyMix,

�42 mL solution from the rRNA removal step, 4 mL 10 mM P5 Primer, and 4 mL 10 mM P7 Primer. The resulting library underwent pu-

rification using SPRIselect beads at a 0.8X ratio, quality control checked using TapeStation, and was then sequenced on an Illumina

NovaSeq 6000 Sequencing System with a paired-end 150bp read length.
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Generation of miR-142 knockout cells and spatial patterning
Murine Ba/F3 cells from our laboratory stock were maintained in RPMI 1640 medium supplemented with 10% heat-inactivated fetal

bovine serum, 1% of penicillin-streptomycin-glutamine (100X), and 3 ng/ml recombinant murine IL-3. Lentiviral CRISPR targeting

miR-142 was performed on Ba/F3 cells containing a miR-142-3p reporter construct, which was generated based on a bidirectional

EGFP/mCherry reporter with four copies of miR-142-3p complementary sequences inserted in the 3’ UTR of EGFP.107 Cells were

infected with a Cas9-sgRNA (cggagaccacgccacgccg) vector (Addgene, 49535) against miR-142-3p via spin-infection, following

our established methods.108 Selection was based on EGFP expression levels, and successful miR-142 knockout cells were

confirmed by qPCR and Sanger sequencing. Finally, wild-type Ba/F3 control cells and miR-142 knockout cells were patterned

into specific shapes, embedded and sectioned for the Patho-DBiT assay.

CODEX spatial phenotyping using PhenoCycler-Fusion
Spatial high-plex phenotyping of the adjacent FFPE section was performed following the CODEX PhenoCycler-Fusion user guide

(https://www.akoyabio.com/wp-content/uploads/2021/01/CODEX-User-Manual.pdf). Briefly, the tissue section underwent depar-

affinization, hydration, antigen retrieval and equilibration in staining buffer, followed by antibody cocktail staining incubated at

room temperature for 3 hours in a humidity chamber. After the completion of the incubation, a series of sequential steps, including

post-fixation, ice-cold methanol incubation, and a final fixative step, were performed. The tissue section, attached to the flow cell,

was then incubated in 1XPhenoCycler buffer with additive for aminimumof 10minutes to enhance adhesion. Afterwards, the CODEX

cycles were configured, the reporter plate was prepared and loaded, and the imaging process commenced. Upon completion of the

imaging cycles, a final QPTIFF file was generated, which could be visualized using QuPath V0.5.0.89 Information about PhenoCycler

antibody panels, experimental cycle design, and reporter plate volumes can be found in Table S4.

H&E, immunohistochemistry (IHC) and in situ hybridization (ISH)
Histological H&E staining and clinical-level IHC and ISH on adjacent FFPE sectionswere conducted at Yale University School ofMed-

icine, Department of Pathology and at YPTS. These procedures adhered to Clinical Laboratory Improvement Amendments (CLIA)-

certified laboratory protocols as well as YPTS’s rigorous standard protocols, ensuring precision and accuracy in the analysis of tissue

samples.

Immunofluorescence staining (IF)
The adjacent FFPE sections underwent a standard IF procedure. After deparaffinization and antigen retrieval, the tissue sections

were fixed in 4% formaldehyde for 10 minutes and subsequently blocked with DPBS containing 5% bovine serum albumin for 1

hour at room temperature. CD68 antibodies, diluted at 1:100 in the blocking buffer, were applied and left to incubate overnight at

4�C. Secondary antibodies for CD68, Alexa-594 labeled CD138, and Alexa-647 labeled CD20 were then introduced following a stan-

dard IF protocol, with a 30-minute incubation at room temperature. The nuclei were counterstained with DAPI at a 1:4000 dilution.

Imaging was conducted using a Leica TCS SP5 Confocal microscope.

Genomic DNA extraction from FFPE sections for whole genome sequencing (WGS)
FFPE tissue sections were deparaffinized and decrosslinked following the procedures described above. Total DNA was extracted

and purified using the Qiagen DNeasy Blood & Tissue Kit according to the manufacturer’s protocol. Samples underwent quality con-

trol via agarose gel electrophoresis. Genomic DNAwas randomly sheared into shorter fragments, which were end-repaired, A-tailed,

and ligated with Illumina adapters. The adapter-ligated fragments were size-selected, PCR amplified, purified, quantified, and

sequenced at 50X depth on an Illumina NovaSeqXPlus system with a 150bp paired-end read length.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence alignment and generation of mRNA expression matrix
To decode sequencing data, the FASTQ file Read 2 underwent processing, involving the extraction of unique molecular identifiers

(UMIs) and spatial Barcode A and Barcode B. The Read 1 containing cDNA sequences was trimmed using Cutadapt V3.490 and

then aligned to either the mouse GRCm38-mm10 or human GRCh38 reference genome using STAR V2.7.7a.91 Utilizing

ST_Pipeline V1.7.6,92 spatial barcode sequences were demultiplexed based on the predefined coordinates of the microfluidic chan-

nels and ENSEMBL IDs were converted to gene names, generating the gene-by-pixel expression matrix for downstream analysis.

Matrix entries corresponding to pixel positions devoid of tissues were excluded. Missing pixels are inferred from nearby data to facil-

itate clustering analysis across the entire mapped area.

Read mapping of non-coding RNA species
Genomic data of various non-coding RNA species for mouse GRCm38-mm39 or human GRCh38 were collected from multiple da-

tabases, includingGENCODE,47 GtRNAdb,93 andRNAcentral.94 For RNA fragmentsmapping tomultiple overlapping annotations, an

‘overlap score’ was calculated using the formula ðLo � LnoÞ=La, where Lo denotes the overlapped length between the query RNA
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fragment and an annotation, Lno represents the non-overlapped length of the query RNA fragment, and La is the total length of the

genomic annotation. The annotation with the highest overlap score was considered the true annotation for the RNA fragment.

Gene data normalization and unsupervised clustering analysis
Spatial gene expression analysis was conducted through the Seurat V4 pipeline.95 First, SCTransform, designed for normalization

and variance stabilization in single-cell RNA sequencing (scRNA-seq) datasets,109 was employed to normalize gene expression

within each pixel. Linear dimensional reduction was performed using the "RunPCA" function, and the optimal number of principal

components for subsequent analysis was determined through a heuristic method, generating an ‘Elbow plot’ that ranks PCA com-

ponents based on their percentage of variances. Second, ‘‘FindNeighbors’’ function was utilized to embed pixels in a K-nearest

neighbor graph structure based on the Euclidean distance in PCA space, and ‘‘FindClusters’’ was implemented using a modularity

optimization technique to cluster the pixels. Finally, the non-linear dimensional reduction function "RunUMAP"was applied to visually

explore spatial heterogeneities using the UniformManifold Approximation and Projection (UMAP) algorithm, and the identification of

differentially expressed genes (DEGs) defining each cluster was accomplished through the "FindMarkers" function for pairwise com-

parison between groups of pixels.

Integration with scRNA-seq datasets
At a pixel size of 50 mm, Patho-DBiT assay pixels capture the expression profiles of multiple cells. We employed the ‘anchor’-based

integration workflow included into Seurat V4 to deconvolute each spatial voxel, predicting the underlying composition of cell

types.110 This facilitated the probabilistic transfer of annotations from a reference to a query set. After standard "SCTransform"

normalization of both Patho-DBiT and reference scRNA-seq data, the "FindTransferAnchors" function identified anchors between

the reference scRNA-seq and our query Patho-DBiT object. Subsequently, the "TransferData" function was applied for label transfer,

providing a probabilistic classification for each spatial pixel based on well-annotated scRNA-seq identities. These predictions were

added as a new assay to the Patho-DBiT object. Unsupervised clustering was then performed on the combined Patho-DBiT and

reference dataset, resulting in an integrated UMAP where Patho-DBiT pixels were projected onto the scRNA-seq cluster landscape.

The mouse organogenesis reference dataset was obtained from GSE119945,15 and the mouse brain cortex and hippocampus refer-

ence dataset was downloaded from the Allen Mouse Brain Atlas (https://portal.brain-map.org/atlases-and-data/rnaseq).21

qPCR analysis of rRNA removal efficiency
To assess the rRNA removal efficiency of Patho-DBiT, qPCR analysis was performed on cDNA amplicons obtained from three inde-

pendent FFPEmouse E13 embryos before and after rRNA removal. Each sample, with an input amount of 2.5 ng cDNA, underwent a

total volume of 25 mL in the KAPA HiFi HotStart ReadyMix reaction system. Forward and reverse primers targeting cytoplasmic (5S,

5.8S, 18S, and 28S) and mitochondrial (12S and 16S) rRNA were custom-designed and ordered from IDT (sequences provided in

Table S5). QuantiTect Primer Assays for mouseGAPDH and b-actin genes served as internal controls. The qPCR reactions were con-

ducted on a CFX Connect Real-Time System, and fold changes were determined using the comparative CT method.111

Gene body coverage calculation
For each sample, we computed the percentile coverage along the gene body from 5’ to 3’ using the "geneBody_coverage.py" mod-

ule from the RSeQC package V5.0.1 with default settings.96

Spatial microRNA alignment and analysis
The transcriptome output function of STAR was used to generate the microRNA transcriptome BAM file using annotations obtained

from miRBase.97 Only primary alignment of each read mapped to microRNA was preserved, and microRNAs with detected UMI

count R1 were included in the downstream analysis. The nucleotide length of each mapped microRNA read was calculated and

the count distribution across all identified microRNAs was generated. To visualize read coverage across the reference genomic re-

gion, the BAM file of specific microRNAs was directly imported into the Integrative Genomics Viewer (IGV),98 focusing on the precur-

sor microRNA region, including the mature 5p-strand and 3p-strand, for detailed visualization. The spatial microRNA-by-pixel

expression matrix was generated by decoding barcode sequences, and standard functions integrated into Seurat V4 were utilized

for normalization and spatial visualization.

Spatial alternative splicing analysis
For both our Patho-DBiT FFPEmouse brain and 10x Genomics Visium fresh-frozen mouse brain samples, we evaluated five types of

alternative splicing events (SE, RI, A3SS, A5SS, MXE) and their respective splice-junction-spanning read counts from the Binary

Alignment Map (BAM) file of each sample. The rMATS-turbo pipeline V4.1.223 with parameters ‘‘-t single –allow-clipping –vari-

able-read-length’’ and the GRCm38-mm10 mouse gene annotation were employed for this analysis. Candidate events were consid-

ered for further analysis if their inclusion and skipping isoform read counts were bothR 2 when aggregated from all pixels within the

sample. Within each spatial pixel, a gene was deemed to have alternative splicing information if at least one splice-junction-spanning

read of either inclusion or skipping isoform was detected. To identify alternative splicing events showing regional differences in our

Patho-DBiT data, pseudo-bulk BAM files of each brain region were generated by merging reads from all the pixels within the same
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region. Pairwise regional differential alternative splicing analysis was performed by running rMATS-turbo on the generated pseudo-

bulk BAM files for each pair of two regions. An alternative splicing event was considered significant if it exhibited an exon inclusion

level difference of > 0.05 between two regions, with a false discovery rate (FDR) of% 0.05. Exon inclusion levels and FDRs were ob-

tained from rMATS-turbo’s splice-junction-read-based outputs (*.MATS.JC.txt). The spatial locations of reads corresponding to

alternative splicing events were deciphered using their barcode sequences, resulting in distinct inclusion and skipping isoform

expression matrices for each event type. Seurat V4’s "NormalizeData" with a "LogNormalize"-based global-scaling normalization

was applied, and the "SpatialFeaturePlot" was employed to visualize the spatial distribution of selected isoforms. The download links

for the 10x Genomics datasets can be found in Table S6. For cross-validation with an independent dataset,29 spatial expression pro-

files of representative genes and corresponding isoforms were obtained from an online database (http://carra.ipmc.cnrs.fr:3838/

SiTx/) provided by the published work.

Spatial adenosine-to-inosine (A-to-I) RNA editing analysis
A total of 107,095 reference mouse A-to-I RNA editing sites were retrieved from the REDIportal V2.0 database99 as of the download

date on 9-20-2023. The counts of edited and unedited reads for each editing site were calculated from the BAM file containing all

spatial pixels using the "mpileup" subcommand of samtools V1.16.1,100 with parameters ‘‘–no-output-ins –no-output-ins –no-

output-del –no-output-del –no-output-ends -B -d 0 -Q 25 -q 25’’ along with the reference editing site list and the GRCm38-mm10

mouse reference genome. Reads with bases "A" and "G" at editing sites were classified as unedited and edited, respectively. Candi-

date A-to-I RNA editing sites for further analysis were defined as those with a total coverage ofR 10 and an edited read count ofR 1

when aggregated from all pixels within the sample. The overall editing ratio for each editing site was computed by dividing the total

number of edited reads across all pixels by the total coverage of that site. Similarly, the average editing ratio for each pixel or brain

region was determined by dividing the total edited reads by the total coverage of all editing sites within that specific area. The refer-

ence spatial dataset, containing editing sites, editing ratios, and total read counts from long-read Nanopore sequencing of fresh

frozen mouse brain sections, was obtained from the literature.29 For comparison with our Patho-DBiT dataset, only sites with

R10 long reads were included.

Inferring high-resolution tissue architecture using iStar
The iStar algorithm comprises three components: a histology feature extractor, a high-resolution gene expression predictor, and a

tissue architecture annotator, as detailed in our previous publication.41 Briefly, H&E images were rescaled to standardize pixel size,

partitioned into hierarchical image tiles, and histology features were extracted and trained using a vision transformer. A feed-forward

neural network, trained through weakly supervised learning, then predicted superpixel-level gene expressions using the top 1,000

highly variable genes from the Patho-DBiT expression matrix. The tissue was segmented by clustering superpixels based on

gene expression, co-registered with H&E staining images. The top 10 genes defining each cluster were used for biological interpre-

tation, refined by a pathologist according to tissue morphology.

Spatial RNA splicing dynamics
The analysis involved extracting counts of spliced and unspliced reads independently from the aligned BAM file. Genomic regions

corresponding to exons and introns were obtained from the GENCODE annotation.47 Utilizing the "intersect" tool within bedtools

V2.31.0,101 reads overlapping with intronic regions were identified, and the associations between each read and its corresponding

gene were documented. The remaining reads that overlapped with exonic regions were selected, and their connections to the over-

lapped genes were documented as well. After demultiplexing their spatial coordinates, reads containing region records were pro-

cessed to generate spliced and unspliced count matrices, respectively. Following this, the two matrices were imported into the

scVelo pipeline,42 where RNA velocity, pseudotime analysis, and visualization were implemented using default settings. Pixel anno-

tations, featuring assigned cluster identities, were transferred from the Seurat clustering analysis conducted on the combined exonic

and intronic expression matrices.

Coverage comparison with 10x Genomics datasets
To assess and compare the genomic location coverage bandwidth between Patho-DBiT and 10x Genomics 3’ scRNA-seq datasets,

we obtained the aligned BAM files from the respective website. The sequencing depth was normalized by randomly selecting an

equivalent number of reads in each 10x Genomics file and our Patho-DBiT data. Genomic regions with at least one detected read

were considered covered. The download links for the 10x Genomics datasets can be found in Table S6.

Spatial single nucleotide variant (SNV) analysis
The germlinemode of Strelka V2.9.10102 with ‘‘–rna’’ flag was utilized to identify potential SNVs from themapped BAM file. Only high-

confidence variant loci marked as "PASS" in Strelka, along with SNV sites having sequencing countsR10, were retained for further

analysis. Each pixel and SNV site were assigned values: 0 for no read coverage, 1 for wild type, 2 for heterozygous mutation, or 3 for

homozygousmutation. Positions with no detected mutated nucleotides were labeled as wild type, those with both mutated and wild-

type nucleotides were classified as heterozygous mutation, and sites with only mutated nucleotides were categorized as homozy-

gous mutation. For each pixel, only SNV sites identified by Strelka were incorporated into the profile, considering that RNA-seq data
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may not cover the entire genome.112 By combining spatial coordinates defined by barcode sequences, a mutation-by-pixel matrix

was generated, and the cumulative number of SNVs within each pixel was calculated to delineate spatial mutational burden. Sub-

sequently, this mutational matrix was input into the Seurat V4 pipeline to perform unsupervised clustering analysis using standard

normalization, dimensional reduction, and spatial visualization methods.

WGS data alignment and analysis
Raw FASTQ files were mapped to the human GRCh38 reference genome using BWA V0.7.17.103 Duplicate reads were marked by

GATK V4.2.0.0 and removed with samtools V1.16.1.100 De-duplicated BAM files were then used to call somatic mutations with

Strelka V2.9.10102 in somatic mode.

Evolutionary relationship construction
To construct evolutionary relationships among the identified gene clusters, the DNA mutation list was refined using strict criteria: (1)

mutational frequency <10% in the normal sample and (2) significantly lower mutation rate in the normal sample compared to the tu-

mor sample (Fisher test p-value < 0.001). The refined DNA mutation list was cross-referenced with the SNV list to generate a DNA-

verified SNV list. A variation site in a cluster was considered valid if the read coverage was >2. Each valid SNV site was annotated as

‘mutated’ if the mutational frequency was >0.25, otherwise as ‘wild-type’. The distance between clusters was calculated using the

formula Nd=Nv, where Nd is the number of sites with different genotypes between two clusters, and Nv is the number of valid sites in

both clusters. The phylogenetic relationship was constructed using the UPGMA method with the ‘hclust’ function in R V4.3.1 and

visualized using ggtree V3.8.2.104

Copy number variation (CNV) analysis
CNV inference analysis was conducted using inferCNV V1.16.0 with the Patho-DBiT gene expression matrix as input. The resulting

output matrix was utilized to identify genomic regions exhibiting significant CNV events. CNV analysis based on WGS data was per-

formed using CNVkit V0.9.11.105

Ligand-receptor interaction analysis
The R toolkit Connectome V1.0.0106 was employed to investigate cell-cell connectivity patterns using ligand and receptor expres-

sions from our Patho-DBiT datasets. The normalized Seurat object served as input, and cluster identities were utilized to define nodes

in the interaction networks, resulting in an edge list connecting pairs of nodes through specific ligand-receptor mechanisms. We

selected top-ranked interaction pairs, prioritizing those more likely to be biologically and statistically significant based on the scaled

weights of each pair. The "sources.include" and "targets.include" parameters were applied to specify the source cluster emitting

ligand signals and the target cluster expressing receptor genes that sense the ligands.

Ingenuity Pathway Analysis
Ingenuity Pathway Analysis (IPA, QIAGEN)69 was employed to uncover the underlying signaling pathways regulated by the DEGs

characterizing each identified cluster or two groups. The DEG list, along with the corresponding fold change value, p-value, and

adjusted p-value of each gene, was imported into the software. The Ingenuity Knowledge Base (genes only) served as the reference

set for performing Core Expression Analysis. The z-score was utilized to assess the activation or inhibition level of specific pathways.

Conceptually, the z-score is a statistical measure gauging how closely the actual expression pattern of molecules in our DEG

dataset aligns with the expected pattern based on the literature for a particular annotation. A z-score >0 signifies activation or upre-

gulation, while a z-score <0 indicates inhibition or downregulation. A z-score R2 or %�2 is considered significant. The p-value for

each identified signaling pathway is calculated using the right-tailed Fisher’s Exact Test. This significance reflects the probability of

the association of molecules from our Patho-DBiT dataset with the canonical pathway reference dataset. Additionally, a graphical

summary (Figures 3H and S8H) was generated to provide an overview of the major biological themes in our IPA Core Analysis

and illustrate how these concepts interrelate. A machine learning algorithm, relying entirely on prior knowledge, was deployed to

score inferred relationships between molecules, functions, and pathways. Networks were constructed from the IPA analysis results

using a heuristic graph algorithm.

Statistical analysis
Statistical analyses were performed using Prism V9 (GraphPad), with the specific tests employed indicated.
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Figure S1. Patho-DBiT performance and spatial tRNA profiling in E13 mouse embryo sections, related to Figure 1

(A) Left: Patho-DBiT steps post tissue barcoding. Right: qPCR analysis of the rRNA removal efficiency.

(B) Top-ranked DEGs defining each cluster.

(C) Spatial distribution of identified clusters.

(D) Top: unsupervised clustering of the replicate E13 mouse embryo section. Bottom: spatial pan-mRNA and UMI count maps of the replicate section.

(E) Integration of spatial RNA data with scRNA-seq mouse organogenesis data (Cao et al.15).

(F) Spatial expression of tRNA isotypes in the E13 mouse embryo section.
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Figure S2. Spatial co-profiling of gene expression, regional alternative splicing, and A-to-I RNA editing in themouse brain, related to Figure 2

(A) UMAP showing the clustering analysis of Patho-DBiT data in FFPE mouse brain section. Top 5 genes defining each cluster are indicated.

(B) Spatial distribution of clusters 4, 7, and 10 in the isocortex region alongside their principle-defining genes. ISH staining and expression images are from the

Allen Mouse Brain Atlas.

(C) Molecular underpinnings of alternative splicing detection by Patho-DBiT.

(D) Read coverage along the gene body from 50 to 30. Comparison involves Patho-DBiT data and 103 Genomics Visium dataset on a fresh-frozen brain section.

(E) Number of detected spliced events and corresponding parental genes under different read count thresholds.

(F) Distribution of detected splicing events and their corresponding parental genes across spatial pixels, along with the UMI count distribution for each splicing

event.

(G) Regional read count coverage of genes with or without alternative splicing events detected. The number of genes within each violin plot is indicated. Sig-

nificance level was calculated with two-tailed unpaired Student’s t test, **** p < 0.0001.

(H) Junction read coverage of Stxbp1 splicing event in specific brain regions. Spatial expression patterns of the gene, exon inclusion isoform, and exon skipping

isoform are shown. ISH staining and expression images are from the Allen Mouse Brain Atlas.

(I) Spatial expression pattern of representative genes and their corresponding isoforms, as obtained from a published database (http://carra.ipmc.cnrs.fr:3838/

SiTx/) using long-read nanopore sequencing.

(J) Left: spatial Adar expression. Right: correlation between the Adar expression and the average regional editing ratio across various brain regions.

(K and L) Correlation between regional Adarb1 expression (J) or editing ratio (K) detected by short-read Illumina sequencing-based Patho-DBiT and those

detected by long-read nanopore sequencing (Lebrigand et al.29). Note, the hindbrain was not included in the brain sample profiled in the reference dataset.

(M) Venn plot showing the count of distinct editing sites covered by a minimum of 10 UMIs in both datasets.
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Figure S3. Detection accuracy of Patho-DBiT in the AITL section cross-validated with CODEX, related to Figure 3

(A) Full scan of the H&E staining of an adjacent section. Yellow square indicates the region of interest (ROI) spatially barcoded with the 50 mmmicrofluidic device.

(B) Top: UMAP showing the clustering analysis of Patho-DBiT data in the AITL section. The spatial distribution of cluster 5 is indicated. Bottom: spatial expression

of the connective tissue cell score. Genes defining this module score are listed.

(C) Enlarged CODEX image corresponding to the ROI barcoded by Patho-DBiT.

(legend continued on next page)
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(D) CODEX images showing expression of CD3e, CD4, CD8, and granzyme B.

(E) Spatial expressions of MKI67 and PDCD1 and the corresponding CODEX images of Ki67 and PD-1.

(F) Spatial expressions of CXCL13 and the CXCL13 receptor Score. Genes defining this module score are listed on top.

(G) Signaling pathways related to T cell functions in cluster 0, a malignant T cell population. Z score is computed and used to reflect the predicted activation level

(z > 0, activated; z < 0, inhibited; z R 2 or z %� 2 can be considered significant).
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Figure S4. High-resolution spatial profiling of the MALT section, related to Figure 4

(A) H&E staining of an adjacent section with key histological information annotated by a pathologist.

(B) Distribution of detected gene/UMI counts per spatial pixel from reads mapped to exonic or intronic region. The dashed lines indicate average level of gene or

UMI count.

(legend continued on next page)
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(C) Spatial distribution of identified clusters.

(D) Expression of top-ranked defining genes in each iStar cluster.

(E) Correlationmatrices depicting relationships among iStar clusters based on gene expression profiles. Color intensity reflects Pearson’s correlation coefficients,

with only statistically significant correlations (p < 0.05) indicated.
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Figure S5. Tumor differentiation trajectory revealed by spatial RNA splicing dynamics, related to Figure 4
(A) Left top: UMAP visualization of clusters identified in theMALT sample. Left bottom: velocities derived from the dynamical RNA splicing activities are visualized

as streamlines in a UMAP-based embedding. Right: spatial velocity pattern.

(B) Top: cell cycle score colored by the G1, S, or G2/M stage. Bottom: IHC staining for Ki67 in the tumor region of an adjacent section.

(C) Phase portraits showing the ratio of unspliced and spliced RNA for top-ranked genes driving the dynamic flow from cluster C14 to C7, along with their

expression and velocity level within the three tumor clusters. The dashed purple line corresponds to the estimated splicing steady state.

(D) Spatial pseudotime of underlying cellular processes based on the transcriptional dynamics. A discernible change is evident exclusively within the tumor

clusters, where a higher pseudotime number denotes a later differentiation stage.

(E) Gene expression dynamics resolved along the pseudotime direction showing a clear cascade of transcription of the top-ranked genes.
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Figure S6. Validation of spatial variant analysis using a healthy donor sample and WGS, related to Figure 5

(A) Spatial distribution of single-nucleotide variant (SNV) clusters M1 and M3.

(B) Principal-component analysis (PCA) of the identified SNV clusters.

(C) Count comparison of genomic regions with SNV frequency >0.01% between SNV clusters. The SNV frequency was counted within sliding genomic regions of

10,000 bp.

(D) Patho-DBiT mapping of an FFPE lymph node section from a healthy donor using a 20 mm device. Left: tissue scanning with the enlarged region of interest.

Middle: unsupervised clustering revealed 5 distinct clusters. Right: top 5 genes defining each cluster, which were used for cell type annotation.

(legend continued on next page)
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(E) Spatial expression map of accumulated SNVs burden in the donor sample.

(F) Unsupervised clustering of the spatial SNV matrix in the donor sample.

(G) Differentially expressed SNV sites between the tumor and non-tumor clusters.

(H) Spatial distribution of top-ranked SNV sites upregulated in tumor B-cell clusters.

(I) Copy number variation (CNV) profile across all chromosomes based on WGS data.

(J) Scatter plot showing CNVs in selected regions.

ll
OPEN ACCESSResource



(legend on next page)
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Figure S7. Spatial expression profile of non-coding RNAs and microRNA regulations in the MALT section, related to Figure 6

(A) Proportion of reads mapped to different RNA categories and the corresponding counts of each RNA type.

(B) Distribution of selected non-coding RNAs and corresponding UMI counts per spatial pixel. Dashed lines indicate the average number of RNAs or UMI counts.

(C) Differentially expressed non-coding RNAs between tumor B-cell clusters and non-tumor clusters.

(D) Spatial mapping of microRNAs enriched in marginal zone B cells or lymphoma. The read coverage mapped to the reference genome location and spatial

distribution are shown.

(E) Regulatory network between the top downregulatedmicroRNAs and the gene expression in the tumor region. Genes with the highest rankings, demonstrating

positive or negative correlations with the microRNAs, were separately illustrated. Edge thickness is proportional to correlation weights.

(F andG) Correlation analysis betweenmiR-155 and each gene in theGSEA-definedNF-kB signaling (F) or PI3K-AKT signaling (G). Enhanced expression of genes

participating in both signaling pathways is observed in the tumor region compared with the non-tumor region. The dot size indicates the percentage of pixels

expressing the gene, and the color shade represents normalized expression level.
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Figure S8. Spatial transcriptome and microRNA analysis of the DLBCL section, related to Figure 7
(A) H&E staining of an adjacent section with key histological information annotated by a pathologist.

(B) IHC staining of CD20 and surface markers commonly detected in non-Hodgkin B-cell lymphomas (BCL-2 and CD43) on adjacent sections.

(legend continued on next page)
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(C) Distribution of detected gene/UMI counts per spatial pixel within two DLBCL regions. Only reads mapped to the exonic region were considered. Dashed lines

represent the average gene or UMI count level.

(D) Spatial analysis of the region 1 section. Left: unsupervised clustering identified 2 clusters. Middle: spatial expression of the B-cell score, with defining genes

listed. Right: top-ranked genes defining each cluster.

(E) Spatial analysis of the region 2 section. Left: unsupervised clustering identified 10 clusters. Right top: enlarged transcriptomic neighborhood highlighted by the

white square in the left spatial UMAP. Right bottom: tissue morphology of the corresponding area defined by H&E staining of an adjacent section.

(F) Spatial expression of representative cell types in the region 2 section. Genes defining each module score are listed.

(G) Expression of top-ranked defining genes in each iStar cluster.

(H) Left: mechanistic network analysis identifying a significant activation of the master regulator MYC in tumor B cells. Right: spatial expression of the MYC

signaling score. Top 5 genes defining this module score are listed.

(I) IHC staining for c-Myc on an adjacent section.

(J) Left: spatial expression map of miR-21. Right: correlation analysis between miR-21 expression and the MYC signaling score. The Pearson correlation was

calculated across 366 spatial pixels within the tumor region.

(K) DEGs between plasma cells in DLBCL vs. MALT biopsy.

(L) Signaling pathways regulated by DEGs identified in (K).

(M) DEGs between macrophages in DLBCL vs. MALT biopsy.

In (H) and (L),Z score is computed and used to reflect the predicted activation level (z> 0, activated; z< 0, inhibited; zR 2 or z%� 2 can be considered significant).
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